Skip to content

SGP & Deep-Space Models

SGP — Simplified General Perturbations (109 lines)

Section titled “SGP — Simplified General Perturbations (109 lines)”

The simplest model in the suite. SGP is a first-order secular theory with atmospheric drag, suitable for short-term predictions of near-earth objects. It was superseded by SGP4 for most applications but remains in the codebase for completeness and test validation.

SGP lacks the higher-order drag terms (D2D_2, D3D_3, D4D_4) and the modified atmospheric parameters that SGP4 uses for low-perigee orbits. It also uses a simpler form for the long-period periodics.

* SGP 31 OCT 80
SUBROUTINE SGP(IFLAG,TSINCE)
COMMON/E1/XMO,XNODEO,OMEGAO,EO,XINCL,XNO,XNDT2O,XNDD6O,BSTAR,
1 X,Y,Z,XDOT,YDOT,ZDOT,EPOCH,DS50
COMMON/C1/CK2,CK4,E6A,QOMS2T,S,TOTHRD,
1 XJ3,XKE,XKMPER,XMNPDA,AE
DOUBLE PRECISION EPOCH, DS50
IF(IFLAG.EQ.0) GO TO 19
* INITIALIZATION
C1= CK2*1.5
C2= CK2/4.0
C3= CK2/2.0
C4= XJ3*AE**3/(4.0*CK2)
COSIO=COS(XINCL)
SINIO=SIN(XINCL)
A1=(XKE/XNO)**TOTHRD
D1= C1/A1/A1*(3.*COSIO*COSIO-1.)/(1.-EO*EO)**1.5
AO=A1*(1.-1./3.*D1-D1*D1-134./81.*D1*D1*D1)
PO=AO*(1.-EO*EO)
QO=AO*(1.-EO)
XLO=XMO+OMEGAO+XNODEO
D1O= C3 *SINIO*SINIO
D2O= C2 *(7.*COSIO*COSIO-1.)
D3O=C1*COSIO
D4O=D3O*SINIO
PO2NO=XNO/(PO*PO)
OMGDT=C1*PO2NO*(5.*COSIO*COSIO-1.)
XNODOT=-2.*D3O*PO2NO
C5=.5*C4*SINIO*(3.+5.*COSIO)/(1.+COSIO)
C6=C4*SINIO
IFLAG=0
* UPDATE FOR SECULAR GRAVITY AND ATMOSPHERIC DRAG
19 A=XNO+(2.*XNDT2O+3.*XNDD6O*TSINCE)*TSINCE
A=AO*(XNO/A)**TOTHRD
E=E6A
IF(A.GT.QO) E=1.-QO/A
P=A*(1.-E*E)
XNODES= XNODEO+XNODOT*TSINCE
OMGAS= OMEGAO+OMGDT*TSINCE
XLS=FMOD2P(XLO+(XNO+OMGDT+XNODOT+(XNDT2O+XNDD6O*TSINCE)*
1 TSINCE)*TSINCE)

SDP4 and SDP8 wrap the near-earth SGP4/SGP8 models with calls to the DEEP subroutine for lunar-solar perturbations. The pattern is identical for both:

  1. Initialize the near-earth model (same as SGP4/SGP8)
  2. Call DPINIT to set up deep-space coefficients
  3. Each timestep: call DPSEC for secular perturbations, then DPPER for periodic
  4. Apply the near-earth short-period corrections
ModelPeriodTheoryDrag
SGP< 225 min1st order secularn˙\dot{n}, n¨\ddot{n} terms
SGP4< 225 minBrouwer mean elementsLane atmospheric model
SDP4\geq 225 minBrouwer + lunar-solarLane + DEEP
SGP8< 225 minHoots drag theoryImproved drag model
SDP8\geq 225 minHoots + lunar-solarHoots drag + DEEP

In practice, NORAD uses SGP4 for near-earth and SDP4 for deep-space. SGP, SGP8, and SDP8 are historical alternatives provided for completeness. The Rev-1 paper focuses exclusively on SGP4/SDP4 as the operational standard.