SGP4 & SGP8 Models
SGP4 — Brouwer Mean Elements (215 lines)
Section titled “SGP4 — Brouwer Mean Elements (215 lines)”SGP4 is the workhorse model, used for all near-earth objects (period < 225 minutes) in the NORAD catalog. It implements an analytic theory based on Brouwer’s solution to the Vinti problem, with Lane’s atmospheric drag model.
The code structure follows an initialization/propagation pattern controlled by IFLAG:
IFLAG=1: Compute all constants from the mean elements (runs once per TLE)IFLAG=0: Propagate toTSINCEminutes from epoch using saved constants
The perigee height determines three drag regimes:
- Above 220 km: Full equations with higher-order secular terms (, , )
- 98–156 km: Modified atmospheric parameter replaces the standard
- Below 98 km: Simplified
* SGP4 3 NOV 80 SUBROUTINE SGP4(IFLAG,TSINCE) COMMON/E1/XMO,XNODEO,OMEGAO,EO,XINCL,XNO,XNDT2O, 1 XNDD6O,BSTAR,X,Y,Z,XDOT,YDOT,ZDOT,EPOCH,DS50 COMMON/C1/CK2,CK4,E6A,QOMS2T,S,TOTHRD, 1 XJ3,XKE,XKMPER,XMNPDA,AE DOUBLE PRECISION EPOCH, DS50 IF (IFLAG .EQ. 0) GO TO 100** RECOVER ORIGINAL MEAN MOTION (XNODP) AND SEMIMAJOR AXIS (AODP)* FROM INPUT ELEMENTS* A1=(XKE/XNO)**TOTHRD COSIO=COS(XINCL) THETA2=COSIO*COSIO X3THM1=3.*THETA2-1. EOSQ=EO*EO BETAO2=1.-EOSQ BETAO=SQRT(BETAO2) DEL1=1.5*CK2*X3THM1/(A1*A1*BETAO*BETAO2) AO=A1*(1.-DEL1*(.5*TOTHRD+DEL1*(1.+134./81.*DEL1))) DELO=1.5*CK2*X3THM1/(AO*AO*BETAO*BETAO2) XNODP=XNO/(1.+DELO) AODP=AO/(1.-DELO)** INITIALIZATION** FOR PERIGEE LESS THAN 220 KILOMETERS, THE ISIMP FLAG IS SET AND* THE EQUATIONS ARE TRUNCATED TO LINEAR VARIATION IN SQRT A AND* QUADRATIC VARIATION IN MEAN ANOMALY. ALSO, THE C3 TERM, THE* DELTA OMEGA TERM, AND THE DELTA M TERM ARE DROPPED.* ISIMP=0 IF((AODP*(1.-EO)/AE) .LT. (220./XKMPER+AE)) ISIMP=1** FOR PERIGEE BELOW 156 KM, THE VALUES OF* S AND QOMS2T ARE ALTERED* S4=S QOMS24=QOMS2T PERIGE=(AODP*(1.-EO)-AE)*XKMPER IF(PERIGE .GE. 156.) GO TO 10 S4=PERIGE-78. IF(PERIGE .GT. 98.) GO TO 9 S4=20. 9 QOMS24=((120.-S4)*AE/XKMPER)**4 S4=S4/XKMPER+AE 10 PINVSQ=1./(AODP*AODP*BETAO2*BETAO2) TSI=1./(AODP-S4) ETA=AODP*EO*TSI ETASQ=ETA*ETA EETA=EO*ETA PSISQ=ABS(1.-ETASQ) COEF=QOMS24*TSI**4 COEF1=COEF/PSISQ**3.5 C2=COEF1*XNODP*(AODP*(1.+1.5*ETASQ+EETA*(4.+ETASQ))+.75* 1 CK2*TSI/PSISQ*X3THM1*(8.+3.*ETASQ*(8.+ETASQ))) C1=BSTAR*C2 SINIO=SIN(XINCL) A3OVK2=-XJ3/CK2*AE**3 C3=COEF*TSI*A3OVK2*XNODP*AE*SINIO/EO X1MTH2=1.-THETA2 C4=2.*XNODP*COEF1*AODP*BETAO2*(ETA* 1 (2.+.5*ETASQ)+EO*(.5+2.*ETASQ)-2.*CK2*TSI/ 2 (AODP*PSISQ)*(-3.*X3THM1*(1.-2.*EETA+ETASQ* 3 (1.5-.5*EETA))+.75*X1MTH2*(2.*ETASQ-EETA* 4 (1.+ETASQ))*COS(2.*OMEGAO))) C5=2.*COEF1*AODP*BETAO2*(1.+2.75*(ETASQ+EETA)+EETA*ETASQ) THETA4=THETA2*THETA2 TEMP1=3.*CK2*PINVSQ*XNODP TEMP2=TEMP1*CK2*PINVSQ TEMP3=1.25*CK4*PINVSQ*PINVSQ*XNODP XMDOT=XNODP+.5*TEMP1*BETAO*X3THM1+.0625*TEMP2*BETAO* 1 (13.-78.*THETA2+137.*THETA4) X1M5TH=1.-5.*THETA2 OMGDOT=-.5*TEMP1*X1M5TH+.0625*TEMP2*(7.-114.*THETA2+ 1 395.*THETA4)+TEMP3*(3.-36.*THETA2+49.*THETA4) XHDOT1=-TEMP1*COSIO XNODOT=XHDOT1+(.5*TEMP2*(4.-19.*THETA2)+2.*TEMP3*(3.- 1 7.*THETA2))*COSIO OMGCOF=BSTAR*C3*COS(OMEGAO) XMCOF=-TOTHRD*COEF*BSTAR*AE/EETA XNODCF=3.5*BETAO2*XHDOT1*C1 T2COF=1.5*C1 XLCOF=.125*A3OVK2*SINIO*(3.+5.*COSIO)/(1.+COSIO) AYCOF=.25*A3OVK2*SINIO DELMO=(1.+ETA*COS(XMO))**3 SINMO=SIN(XMO) X7THM1=7.*THETA2-1. IF(ISIMP .EQ. 1) GO TO 90 C1SQ=C1*C1 D2=4.*AODP*TSI*C1SQ TEMP=D2*TSI*C1/3. D3=(17.*AODP+S4)*TEMP D4=.5*TEMP*AODP*TSI*(221.*AODP+31.*S4)*C1 T3COF=D2+2.*C1SQ T4COF=.25*(3.*D3+C1*(12.*D2+10.*C1SQ)) T5COF=.2*(3.*D4+12.*C1*D3+6.*D2*D2+15.*C1SQ*( 1 2.*D2+C1SQ)) 90 IFLAG=0** UPDATE FOR SECULAR GRAVITY AND ATMOSPHERIC DRAG* 100 XMDF=XMO+XMDOT*TSINCE OMGADF=OMEGAO+OMGDOT*TSINCE XNODDF=XNODEO+XNODOT*TSINCE OMEGA=OMGADF XMP=XMDF TSQ=TSINCE*TSINCE XNODE=XNODDF+XNODCF*TSQ TEMPA=1.-C1*TSINCE TEMPE=BSTAR*C4*TSINCE TEMPL=T2COF*TSQ IF(ISIMP .EQ. 1) GO TO 110 DELOMG=OMGCOF*TSINCE DELM=XMCOF*((1.+ETA*COS(XMDF))**3-DELMO) TEMP=DELOMG+DELM XMP=XMDF+TEMP OMEGA=OMGADF-TEMP TCUBE=TSQ*TSINCE TFOUR=TSINCE*TCUBE TEMPA=TEMPA-D2*TSQ-D3*TCUBE-D4*TFOUR TEMPE=TEMPE+BSTAR*C5*(SIN(XMP)-SINMO) TEMPL=TEMPL+T3COF*TCUBE+ 1 TFOUR*(T4COF+TSINCE*T5COF) 110 A=AODP*TEMPA**2 E=EO-TEMPE XL=XMP+OMEGA+XNODE+XNODP*TEMPL BETA=SQRT(1.-E*E) XN=XKE/A**1.5** LONG PERIOD PERIODICS* AXN=E*COS(OMEGA) TEMP=1./(A*BETA*BETA) XLL=TEMP*XLCOF*AXN AYNL=TEMP*AYCOF XLT=XL+XLL AYN=E*SIN(OMEGA)+AYNL** SOLVE KEPLERS EQUATION* CAPU=FMOD2P(XLT-XNODE) TEMP2=CAPU DO 130 I=1,10 SINEPW=SIN(TEMP2) COSEPW=COS(TEMP2) TEMP3=AXN*SINEPW TEMP4=AYN*COSEPW TEMP5=AXN*COSEPW TEMP6=AYN*SINEPW EPW=(CAPU-TEMP4+TEMP3-TEMP2)/(1.-TEMP5-TEMP6)+TEMP2 IF(ABS(EPW-TEMP2) .LE. E6A) GO TO 140 130 TEMP2=EPW** SHORT PERIOD PRELIMINARY QUANTITIES* 140 ECOSE=TEMP5+TEMP6 ESINE=TEMP3-TEMP4 ELSQ=AXN*AXN+AYN*AYN TEMP=1.-ELSQ PL=A*TEMP R=A*(1.-ECOSE) TEMP1=1./R RDOT=XKE*SQRT(A)*ESINE*TEMP1 RFDOT=XKE*SQRT(PL)*TEMP1 TEMP2=A*TEMP1 BETAL=SQRT(TEMP) TEMP3=1./(1.+BETAL) COSU=TEMP2*(COSEPW-AXN+AYN*ESINE*TEMP3) SINU=TEMP2*(SINEPW-AYN-AXN*ESINE*TEMP3) U=ACTAN(SINU,COSU) SIN2U=2.*SINU*COSU COS2U=2.*COSU*COSU-1. TEMP=1./PL TEMP1=CK2*TEMP TEMP2=TEMP1*TEMP** UPDATE FOR SHORT PERIODICS* RK=R*(1.-1.5*TEMP2*BETAL*X3THM1)+.5*TEMP1*X1MTH2*COS2U UK=U-.25*TEMP2*X7THM1*SIN2U XNODEK=XNODE+1.5*TEMP2*COSIO*SIN2U XINCK=XINCL+1.5*TEMP2*COSIO*SINIO*COS2U RDOTK=RDOT-XN*TEMP1*X1MTH2*SIN2U RFDOTK=RFDOT+XN*TEMP1*(X1MTH2*COS2U+1.5*X3THM1)** ORIENTATION VECTORS* SINUK=SIN(UK) COSUK=COS(UK) SINIK=SIN(XINCK) COSIK=COS(XINCK) SINNOK=SIN(XNODEK) COSNOK=COS(XNODEK) XMX=-SINNOK*COSIK XMY=COSNOK*COSIK UX=XMX*SINUK+COSNOK*COSUK UY=XMY*SINUK+SINNOK*COSUK UZ=SINIK*SINUK VX=XMX*COSUK-COSNOK*SINUK VY=XMY*COSUK-SINNOK*SINUK VZ=SINIK*COSUK** POSITION AND VELOCITY* X=RK*UX Y=RK*UY Z=RK*UZ XDOT=RDOTK*UX+RFDOTK*VX YDOT=RDOTK*UY+RFDOTK*VY ZDOT=RDOTK*UZ+RFDOTK*VZ RETURN ENDKey Implementation Notes
Section titled “Key Implementation Notes”COMMON blocks — All models share two COMMON blocks:
/E1/— Orbital elements and output position/velocity (input/output interface)/C1/— Physical and geopotential constants (WGS-72)
Static locals — The IFLAG pattern relies on FORTRAN IV’s static allocation:
variables from the initialization pass (lines 8–100) survive to subsequent propagation
calls (line 100+). This requires -fno-automatic on modern compilers.
Kepler’s equation — Solved via Newton-Raphson iteration (lines 143–154) with
tolerance E6A = 1.0E-6. Limited to 10 iterations, which can diverge for .
The Rev-1 paper addresses this with a
clamped first correction.
Perigee thresholds — Lines 33–47 implement three atmospheric density regimes. The threshold constants (220 km, 156 km, 98 km) are specific to the Lane drag model and must not be changed independently of the atmospheric density coefficients.