Skip to content

STR#1 — Hujsak (1979): Deep-Space Theory

The first of three Spacetrack Reports that together define the complete SGP4/SDP4 propagation system. STR#1 provides the deep-space theory — lunar-solar perturbations and tesseral harmonic resonance — implemented as the DEEP subroutine in STR#3.

ReportAuthor(s)DateSubjectDTIC
STR#1R.S. HujsakNov 1979Deep-space (luni-solar, resonance)ADA081263
STR#2M.H. Lane, F.R. HootsDec 1979Near-earth (drag + geopotential)ADA083578
STR#3F.R. Hoots, R.L. RoehrichDec 1980FORTRAN implementation of all modelsADA093554

When a TLE arrives, the orbital period determines which propagation path to use:

graph TD
    A[TLE Input] --> B{Period >= 225 min?}
    B -->|No| C[SGP4 / STR#2]
    B -->|Yes| D[SDP4 / STR#1]
    C --> E[J2 secular + drag]
    C --> F[Short-period J2 corrections]
    E --> G[Position and Velocity]
    F --> G
    D --> H[DEEP subroutine]
    H --> I[Lunar-solar secular rates]
    H --> J[Lunar-solar periodic corrections]
    H --> K{12h or 24h orbit?}
    K -->|Yes| L[Resonance integrator]
    K -->|No| M[Skip resonance]
    I --> N[Position and Velocity]
    J --> N
    L --> N
    M --> N

The theory models satellite motion under the gravitational influence of four bodies:

  1. Earth (oblate): J2J_2, J3J_3, J4J_4 zonal harmonics; J22J_{22}, J32J_{32}, J33J_{33}, J44J_{44}, J54J_{54} tesseral harmonics (resonance only)
  2. Moon: Point mass, assumed in the ecliptic plane, circular orbit
  3. Sun: Point mass, in the ecliptic plane, slightly eccentric orbit
  4. Satellite: Massless test particle, no drag (deep-space regime)

The method of averaging (Von Zeipel/Hori) with canonical Lie transformations:

  1. Express the Hamiltonian in Delaunay variables (l,g,h,L,G,H)(l, g, h, L, G, H)
  2. Decompose into secular (Fˉ\bar{F}), periodic (FF'), and resonance (FRF_R) parts
  3. Secular rates from Fˉ/(momenta)\partial\bar{F}/\partial(\text{momenta})
  4. Generating function S=F/lˉ˙dlS = \int F'/\dot{\bar{l}}\,dl relates mean to osculating elements
  5. For resonant orbits, FRF_R is added to the secular Hamiltonian and the resulting equations are integrated numerically

The DEEP subroutine has three entry points. Each maps to specific sections of the paper.

Paper SectionDEEP ImplementationDescription
Appendix ISolar/lunar longitude computationCompute λ\lambda_\odot, λL\lambda_L at epoch
Appendix H, Sec H.2—H.4Direction cosine variables Z1Z31Z_1\ldots Z_{31}, a1a10a_1\ldots a_{10}, X1X8X_1\ldots X_8Satellite-to-third-body geometry
Appendix H, Sec H.5F2F_2, F3F_3, FAB computationDirection cosine combinations for force function
Appendix DCentral body secular ratesg˙J2\dot{g}_{J_2}, h˙J2\dot{h}_{J_2}, g˙J4\dot{g}_{J_4}, etc.
Appendix EThird body secular ratese˙L\dot{e}_L, i˙L\dot{i}_L, g˙L\dot{g}_L, h˙L\dot{h}_L (+ solar)
Sec 5.5Resonance detectionCheck nn against 12h and 24h bands
Appendix F, Sec F.6Resonance initializationSet λr,0\lambda_{r,0}, λ˙r,0\dot{\lambda}_{r,0}, harmonic coefficients
Appendix JInclination/eccentricity functionsF220F_{220}, G200G_{200}, etc. for resonance terms
Paper SectionDEEP ImplementationDescription
Appendix D, Sec D.4Linear extrapolation of gg, hhgˉ(t)=gˉ0+g˙t\bar{g}(t) = \bar{g}_0 + \dot{g}\cdot t
Appendix E, Sec E.8Update ee, ii from lunar-solar seculareˉ(t)=eˉ0+e˙t\bar{e}(t) = \bar{e}_0 + \dot{e}\cdot t
Appendix IRecompute λ(t)\lambda_\odot(t), λL(t)\lambda_L(t)Update third body positions
Appendix F, Sec F.5Numerical integration stepFor resonant orbits only
Paper SectionDEEP ImplementationDescription
Appendix HRecompute direction cosines at ttUpdated X1X8X_1\ldots X_8, F2F_2, F3F_3, FAB
Appendix G, Sec G.2δe\delta e correctionPeriodic eccentricity correction
Appendix G, Sec G.3δi\delta i correctionPeriodic inclination correction
Appendix G, Sec G.4δg\delta g correctionPeriodic perigee correction
Appendix G, Sec G.5δh\delta h correctionPeriodic node correction
Appendix G, Sec G.6δl\delta l correctionPeriodic mean anomaly correction
Paper SymbolDEEP VariableMeaning
llXLLMean anomaly
ggOMGASMArgument of perigee
hhXNODESRight ascension of ascending node
eeEMEccentricity
iiXINCInclination
nnXNMean motion
λr\lambda_rXLIResonance angle
λ˙r\dot{\lambda}_rXNIResonance angle rate
F2F_2F2α2+β2\alpha^2 + \beta^2 direction cosine combination
F3F_3F3α2β2\alpha^2 - \beta^2 direction cosine combination
DDFABαβ\alpha\beta direction cosine product
δe\delta ePEPeriodic eccentricity correction
δi\delta iPINCPeriodic inclination correction
δg\delta gPGHPeriodic perigee correction
δh\delta hPHPeriodic node correction
δl\delta lPLPeriodic mean anomaly correction
SourceOrderElements Affected
J2J_2 secularO(J2)O(J_2)l˙\dot{l}, g˙\dot{g}, h˙\dot{h}
J22J_2^2 secularO(J22)O(J_2^2)l˙\dot{l}, g˙\dot{g}, h˙\dot{h}
J4J_4 secularO(J4)O(J_4)g˙\dot{g}, h˙\dot{h}
Lunar secularO(μL/μ)O(\mu_L/\mu)e˙\dot{e}, i˙\dot{i}, g˙\dot{g}, h˙\dot{h}
Solar secularO(μSa3/rS3)O(\mu_S a^3/r_S^3)e˙\dot{e}, i˙\dot{i}, g˙\dot{g}, h˙\dot{h}
Lunar periodicO(μL/μ)O(\mu_L/\mu)δe\delta e, δi\delta i, δg\delta g, δh\delta h, δl\delta l, δa\delta a
Solar periodicO(μSa3/rS3)O(\mu_S a^3/r_S^3)δe\delta e, δi\delta i, δg\delta g, δh\delta h, δl\delta l, δa\delta a
J22J_{22} resonanceO(J22)O(J_{22})n˙\dot{n}, e˙\dot{e}, i˙\dot{i} (24-hour only)
J32J_{32}, J33J_{33} resonanceO(J3m)O(J_{3m})n˙\dot{n}, e˙\dot{e}, i˙\dot{i} (12-hour only)