STR#1 — Hujsak (1979): Deep-Space Theory
The first of three Spacetrack Reports that together define the complete SGP4/SDP4 propagation system. STR#1 provides the deep-space theory — lunar-solar perturbations and tesseral harmonic resonance — implemented as the DEEP subroutine in STR#3.
The Spacetrack Report Series
Section titled “The Spacetrack Report Series”| Report | Author(s) | Date | Subject | DTIC |
|---|---|---|---|---|
| STR#1 | R.S. Hujsak | Nov 1979 | Deep-space (luni-solar, resonance) | ADA081263 |
| STR#2 | M.H. Lane, F.R. Hoots | Dec 1979 | Near-earth (drag + geopotential) | ADA083578 |
| STR#3 | F.R. Hoots, R.L. Roehrich | Dec 1980 | FORTRAN implementation of all models | ADA093554 |
TLE Routing
Section titled “TLE Routing”When a TLE arrives, the orbital period determines which propagation path to use:
graph TD
A[TLE Input] --> B{Period >= 225 min?}
B -->|No| C[SGP4 / STR#2]
B -->|Yes| D[SDP4 / STR#1]
C --> E[J2 secular + drag]
C --> F[Short-period J2 corrections]
E --> G[Position and Velocity]
F --> G
D --> H[DEEP subroutine]
H --> I[Lunar-solar secular rates]
H --> J[Lunar-solar periodic corrections]
H --> K{12h or 24h orbit?}
K -->|Yes| L[Resonance integrator]
K -->|No| M[Skip resonance]
I --> N[Position and Velocity]
J --> N
L --> N
M --> N
Physical Model
Section titled “Physical Model”The theory models satellite motion under the gravitational influence of four bodies:
- Earth (oblate): , , zonal harmonics; , , , , tesseral harmonics (resonance only)
- Moon: Point mass, assumed in the ecliptic plane, circular orbit
- Sun: Point mass, in the ecliptic plane, slightly eccentric orbit
- Satellite: Massless test particle, no drag (deep-space regime)
Mathematical Approach
Section titled “Mathematical Approach”The method of averaging (Von Zeipel/Hori) with canonical Lie transformations:
- Express the Hamiltonian in Delaunay variables
- Decompose into secular (), periodic (), and resonance () parts
- Secular rates from
- Generating function relates mean to osculating elements
- For resonant orbits, is added to the secular Hamiltonian and the resulting equations are integrated numerically
DEEP Subroutine Mapping
Section titled “DEEP Subroutine Mapping”The DEEP subroutine has three entry points. Each maps to specific sections of the paper.
Initialization (DPINIT)
Section titled “Initialization (DPINIT)”| Paper Section | DEEP Implementation | Description |
|---|---|---|
| Appendix I | Solar/lunar longitude computation | Compute , at epoch |
| Appendix H, Sec H.2—H.4 | Direction cosine variables , , | Satellite-to-third-body geometry |
| Appendix H, Sec H.5 | , , FAB computation | Direction cosine combinations for force function |
| Appendix D | Central body secular rates | , , , etc. |
| Appendix E | Third body secular rates | , , , (+ solar) |
| Sec 5.5 | Resonance detection | Check against 12h and 24h bands |
| Appendix F, Sec F.6 | Resonance initialization | Set , , harmonic coefficients |
| Appendix J | Inclination/eccentricity functions | , , etc. for resonance terms |
Secular Update (DPSEC)
Section titled “Secular Update (DPSEC)”| Paper Section | DEEP Implementation | Description |
|---|---|---|
| Appendix D, Sec D.4 | Linear extrapolation of , | |
| Appendix E, Sec E.8 | Update , from lunar-solar secular | |
| Appendix I | Recompute , | Update third body positions |
| Appendix F, Sec F.5 | Numerical integration step | For resonant orbits only |
Periodic Correction (DPPER)
Section titled “Periodic Correction (DPPER)”| Paper Section | DEEP Implementation | Description |
|---|---|---|
| Appendix H | Recompute direction cosines at | Updated , , , FAB |
| Appendix G, Sec G.2 | correction | Periodic eccentricity correction |
| Appendix G, Sec G.3 | correction | Periodic inclination correction |
| Appendix G, Sec G.4 | correction | Periodic perigee correction |
| Appendix G, Sec G.5 | correction | Periodic node correction |
| Appendix G, Sec G.6 | correction | Periodic mean anomaly correction |
Key Variable Correspondence
Section titled “Key Variable Correspondence”| Paper Symbol | DEEP Variable | Meaning |
|---|---|---|
XLL | Mean anomaly | |
OMGASM | Argument of perigee | |
XNODES | Right ascension of ascending node | |
EM | Eccentricity | |
XINC | Inclination | |
XN | Mean motion | |
XLI | Resonance angle | |
XNI | Resonance angle rate | |
F2 | direction cosine combination | |
F3 | direction cosine combination | |
FAB | direction cosine product | |
PE | Periodic eccentricity correction | |
PINC | Periodic inclination correction | |
PGH | Periodic perigee correction | |
PH | Periodic node correction | |
PL | Periodic mean anomaly correction |
Perturbation Hierarchy
Section titled “Perturbation Hierarchy”| Source | Order | Elements Affected |
|---|---|---|
| secular | , , | |
| secular | , , | |
| secular | , | |
| Lunar secular | , , , | |
| Solar secular | , , , | |
| Lunar periodic | , , , , , | |
| Solar periodic | , , , , , | |
| resonance | , , (24-hour only) | |
| , resonance | , , (12-hour only) |
STR#2: Near-Earth Theory The companion near-earth drag theory
STR#3: Introduction The unified implementation document
FORTRAN: DEEP Subroutine The actual FORTRAN code implementing this theory