The NORAD mean element sets can be used for prediction with SGP8. All symbols not defined
below are defined in the list of symbols in Section Twelve. The original mean motion (n o ′ ′ n''_o n o ′′ ) and
semimajor axis (a o ′ ′ a''_o a o ′′ ) are first recovered from the input elements by the equations
a 1 = ( k e n o ) 2 3 a_1 = \left(\frac{k_e}{n_o}\right)^{\frac{2}{3}} a 1 = ( n o k e ) 3 2
δ 1 = 3 2 k 2 a 1 2 ( 3 cos 2 i o − 1 ) ( 1 − e o 2 ) 3 2 \delta_1 = \frac{3}{2} \frac{k_2}{a_1^2} \frac{(3\cos^2 i_o - 1)}{(1 - e_o^2)^{\frac{3}{2}}} δ 1 = 2 3 a 1 2 k 2 ( 1 − e o 2 ) 2 3 ( 3 c o s 2 i o − 1 )
a o = a 1 ( 1 − 1 3 δ 1 − δ 1 2 − 134 81 δ 1 3 ) a_o = a_1 \left(1 - \frac{1}{3}\delta_1 - \delta_1^2 - \frac{134}{81}\delta_1^3\right) a o = a 1 ( 1 − 3 1 δ 1 − δ 1 2 − 81 134 δ 1 3 )
δ o = 3 2 k 2 a o 2 ( 3 cos 2 i o − 1 ) ( 1 − e o 2 ) 3 2 \delta_o = \frac{3}{2} \frac{k_2}{a_o^2} \frac{(3\cos^2 i_o - 1)}{(1 - e_o^2)^{\frac{3}{2}}} δ o = 2 3 a o 2 k 2 ( 1 − e o 2 ) 2 3 ( 3 c o s 2 i o − 1 )
n o ′ ′ = n o 1 + δ o n''_o = \frac{n_o}{1 + \delta_o} n o ′′ = 1 + δ o n o
a o ′ ′ = a o 1 − δ o . a''_o = \frac{a_o}{1 - \delta_o}. a o ′′ = 1 − δ o a o .
The ballistic coefficient (B B B term) is then calculated from the B ∗ B^* B ∗ drag term by
B = 2 B ∗ / ρ o B = 2B^*/\rho_o B = 2 B ∗ / ρ o
where
ρ o = ( 2.461 × 10 − 5 ) XKMPER kg/m 2 /Earth radii \rho_o = (2.461 \times 10^{-5}) \text{ XKMPER kg/m}^2\text{/Earth radii} ρ o = ( 2.461 × 1 0 − 5 ) XKMPER kg/m 2 /Earth radii
is a reference value of atmospheric density.
Then calculate the constants
β 2 = 1 − e 2 \beta^2 = 1 - e^2 β 2 = 1 − e 2
θ = cos i \theta = \cos i θ = cos i
M ˙ 1 = − 3 2 n ′ ′ k 2 a ′ ′ 2 β 3 ( 1 − 3 θ 2 ) \dot{M}_1 = -\frac{3}{2} \frac{n'' k_2}{a''^2 \beta^3} (1 - 3\theta^2) M ˙ 1 = − 2 3 a ′′2 β 3 n ′′ k 2 ( 1 − 3 θ 2 )
ω ˙ 1 = − 3 2 n ′ ′ k 2 a ′ ′ 2 β 4 ( 1 − 5 θ 2 ) \dot{\omega}_1 = -\frac{3}{2} \frac{n'' k_2}{a''^2 \beta^4} (1 - 5\theta^2) ω ˙ 1 = − 2 3 a ′′2 β 4 n ′′ k 2 ( 1 − 5 θ 2 )
Ω ˙ 1 = − 3 n ′ ′ k 2 a ′ ′ 2 β 4 θ \dot{\Omega}_1 = -3 \frac{n'' k_2}{a''^2 \beta^4} \theta Ω ˙ 1 = − 3 a ′′2 β 4 n ′′ k 2 θ
M ˙ 2 = 3 16 n ′ ′ k 2 2 a ′ ′ 4 β 7 ( 13 − 78 θ 2 + 137 θ 4 ) \dot{M}_2 = \frac{3}{16} \frac{n'' k_2^2}{a''^4 \beta^7} (13 - 78\theta^2 + 137\theta^4) M ˙ 2 = 16 3 a ′′4 β 7 n ′′ k 2 2 ( 13 − 78 θ 2 + 137 θ 4 )
ω ˙ 2 = 3 16 n ′ ′ k 2 2 a ′ ′ 4 β 8 ( 7 − 114 θ 2 + 395 θ 4 ) + 5 4 n ′ ′ k 4 a ′ ′ 4 β 8 ( 3 − 36 θ 2 + 49 θ 4 ) \dot{\omega}_2 = \frac{3}{16} \frac{n'' k_2^2}{a''^4 \beta^8} (7 - 114\theta^2 + 395\theta^4) + \frac{5}{4} \frac{n'' k_4}{a''^4 \beta^8} (3 - 36\theta^2 + 49\theta^4) ω ˙ 2 = 16 3 a ′′4 β 8 n ′′ k 2 2 ( 7 − 114 θ 2 + 395 θ 4 ) + 4 5 a ′′4 β 8 n ′′ k 4 ( 3 − 36 θ 2 + 49 θ 4 )
Ω ˙ 2 = 3 2 n ′ ′ k 2 2 a ′ ′ 4 β 8 θ ( 4 − 19 θ 2 ) + 5 2 n ′ ′ k 4 a ′ ′ 4 β 8 θ ( 3 − 7 θ 2 ) \dot{\Omega}_2 = \frac{3}{2} \frac{n'' k_2^2}{a''^4 \beta^8} \theta(4 - 19\theta^2) + \frac{5}{2} \frac{n'' k_4}{a''^4 \beta^8} \theta(3 - 7\theta^2) Ω ˙ 2 = 2 3 a ′′4 β 8 n ′′ k 2 2 θ ( 4 − 19 θ 2 ) + 2 5 a ′′4 β 8 n ′′ k 4 θ ( 3 − 7 θ 2 )
ℓ ˙ = n ′ ′ + M ˙ 1 + M ˙ 2 \dot{\ell} = n'' + \dot{M}_1 + \dot{M}_2 ℓ ˙ = n ′′ + M ˙ 1 + M ˙ 2
ω ˙ = ω ˙ 1 + ω ˙ 2 \dot{\omega} = \dot{\omega}_1 + \dot{\omega}_2 ω ˙ = ω ˙ 1 + ω ˙ 2
Ω ˙ = Ω ˙ 1 + Ω ˙ 2 \dot{\Omega} = \dot{\Omega}_1 + \dot{\Omega}_2 Ω ˙ = Ω ˙ 1 + Ω ˙ 2
ξ = 1 a ′ ′ β 2 − s \xi = \frac{1}{a''\beta^2 - s} ξ = a ′′ β 2 − s 1
η = e s ξ \eta = es\xi η = es ξ
ψ = 1 − η 2 \psi = \sqrt{1 - \eta^2} ψ = 1 − η 2
α 2 = 1 + e 2 \alpha^2 = 1 + e^2 α 2 = 1 + e 2
C o = 1 2 B ρ o ( q o − s ) 4 n ′ ′ a ′ ′ ξ 4 α − 1 ψ − 7 C_o = \frac{1}{2} B\rho_o (q_o - s)^4 n'' a'' \xi^4 \alpha^{-1} \psi^{-7} C o = 2 1 B ρ o ( q o − s ) 4 n ′′ a ′′ ξ 4 α − 1 ψ − 7
C 1 = 3 2 n ′ ′ α 4 C o C_1 = \frac{3}{2} n'' \alpha^4 C_o C 1 = 2 3 n ′′ α 4 C o
D 1 = ξ ψ − 2 / a ′ ′ β 2 D_1 = \xi\psi^{-2}/a''\beta^2 D 1 = ξ ψ − 2 / a ′′ β 2
D 2 = 12 + 36 η 2 + 9 2 η 4 D_2 = 12 + 36\eta^2 + \frac{9}{2}\eta^4 D 2 = 12 + 36 η 2 + 2 9 η 4
D 3 = 15 η 2 + 5 2 η 4 D_3 = 15\eta^2 + \frac{5}{2}\eta^4 D 3 = 15 η 2 + 2 5 η 4
D 4 = 5 η + 15 4 η 3 D_4 = 5\eta + \frac{15}{4}\eta^3 D 4 = 5 η + 4 15 η 3
D 5 = ξ ψ − 2 D_5 = \xi\psi^{-2} D 5 = ξ ψ − 2
B 1 = − k 2 ( 1 − 3 θ 2 ) B_1 = -k_2(1 - 3\theta^2) B 1 = − k 2 ( 1 − 3 θ 2 )
B 2 = − k 2 ( 1 − θ 2 ) B_2 = -k_2(1 - \theta^2) B 2 = − k 2 ( 1 − θ 2 )
B 3 = A 3 , 0 k 2 sin i B_3 = \frac{A_{3,0}}{k_2} \sin i B 3 = k 2 A 3 , 0 sin i
C 2 = D 1 D 3 B 2 C_2 = D_1 D_3 B_2 C 2 = D 1 D 3 B 2
C 3 = D 4 D 5 B 3 C_3 = D_4 D_5 B_3 C 3 = D 4 D 5 B 3
n ˙ o = C 1 ( 2 + 3 η 2 + 20 e η + 5 e η 3 + 17 2 e 2 + 34 e 2 η 2 + D 1 D 2 B 1 + C 2 cos 2 ω + C 3 sin ω ) \dot{n}_o = C_1 \left(2 + 3\eta^2 + 20e\eta + 5e\eta^3 + \frac{17}{2}e^2 + 34e^2\eta^2 + D_1 D_2 B_1 + C_2 \cos 2\omega + C_3 \sin \omega\right) n ˙ o = C 1 ( 2 + 3 η 2 + 20 eη + 5 e η 3 + 2 17 e 2 + 34 e 2 η 2 + D 1 D 2 B 1 + C 2 cos 2 ω + C 3 sin ω )
C 4 = D 1 D 7 B 2 C_4 = D_1 D_7 B_2 C 4 = D 1 D 7 B 2
C 5 = D 5 D 8 B 3 C_5 = D_5 D_8 B_3 C 5 = D 5 D 8 B 3
D 6 = 30 η + 45 2 η 3 D_6 = 30\eta + \frac{45}{2}\eta^3 D 6 = 30 η + 2 45 η 3
D 7 = 5 η + 25 2 η 3 D_7 = 5\eta + \frac{25}{2}\eta^3 D 7 = 5 η + 2 25 η 3
D 8 = 1 + 27 4 η 2 + η 4 D_8 = 1 + \frac{27}{4}\eta^2 + \eta^4 D 8 = 1 + 4 27 η 2 + η 4
e ˙ o = − C o ( 4 η + η 3 + 5 e + 15 e η 2 + 31 2 e 2 η + 7 e 2 η 3 + D 1 D 6 B 1 + C 4 cos 2 ω + C 5 sin ω ) \dot{e}_o = -C_o \left(4\eta + \eta^3 + 5e + 15e\eta^2 + \frac{31}{2}e^2\eta + 7e^2\eta^3 + D_1 D_6 B_1 + C_4 \cos 2\omega + C_5 \sin \omega\right) e ˙ o = − C o ( 4 η + η 3 + 5 e + 15 e η 2 + 2 31 e 2 η + 7 e 2 η 3 + D 1 D 6 B 1 + C 4 cos 2 ω + C 5 sin ω )
α ˙ / α = e e ˙ α − 2 \dot{\alpha}/\alpha = e\dot{e}\alpha^{-2} α ˙ / α = e e ˙ α − 2
C 6 = 1 3 n ˙ n ′ ′ C_6 = \frac{1}{3} \frac{\dot{n}}{n''} C 6 = 3 1 n ′′ n ˙
ξ ˙ / ξ = 2 a ′ ′ ξ ( C 6 β 2 + e e ˙ ) \dot{\xi}/\xi = 2a''\xi(C_6\beta^2 + e\dot{e}) ξ ˙ / ξ = 2 a ′′ ξ ( C 6 β 2 + e e ˙ )
η ˙ = ( e ˙ + e ξ ˙ / ξ ) s ξ \dot{\eta} = (\dot{e} + e\dot{\xi}/\xi)s\xi η ˙ = ( e ˙ + e ξ ˙ / ξ ) s ξ
ψ ˙ / ψ = − η η ˙ ψ − 2 \dot{\psi}/\psi = -\eta\dot{\eta}\psi^{-2} ψ ˙ / ψ = − η η ˙ ψ − 2
C ˙ o / C o = C 6 + 4 ξ ˙ / ξ − α ˙ / α − 7 ψ ˙ / ψ \dot{C}_o/C_o = C_6 + 4\dot{\xi}/\xi - \dot{\alpha}/\alpha - 7\dot{\psi}/\psi C ˙ o / C o = C 6 + 4 ξ ˙ / ξ − α ˙ / α − 7 ψ ˙ / ψ
C ˙ 1 / C 1 = n ˙ / n ′ ′ + 4 α ˙ / α + C ˙ o / C o \dot{C}_1/C_1 = \dot{n}/n'' + 4\dot{\alpha}/\alpha + \dot{C}_o/C_o C ˙ 1 / C 1 = n ˙ / n ′′ + 4 α ˙ / α + C ˙ o / C o
D 9 = 6 η + 20 e + 15 e η 2 + 68 e 2 η D_9 = 6\eta + 20e + 15e\eta^2 + 68e^2\eta D 9 = 6 η + 20 e + 15 e η 2 + 68 e 2 η
D 10 = 20 η + 5 η 3 + 17 e + 68 e η 2 D_{10} = 20\eta + 5\eta^3 + 17e + 68e\eta^2 D 10 = 20 η + 5 η 3 + 17 e + 68 e η 2
D 11 = 72 η + 18 η 3 D_{11} = 72\eta + 18\eta^3 D 11 = 72 η + 18 η 3
D 12 = 30 η + 10 η 3 D_{12} = 30\eta + 10\eta^3 D 12 = 30 η + 10 η 3
D 13 = 5 + 45 4 η 2 D_{13} = 5 + \frac{45}{4}\eta^2 D 13 = 5 + 4 45 η 2
D 14 = ξ ˙ / ξ − 2 ψ ˙ / ψ D_{14} = \dot{\xi}/\xi - 2\dot{\psi}/\psi D 14 = ξ ˙ / ξ − 2 ψ ˙ / ψ
D 15 = 2 ( C 6 + e e ˙ β − 2 ) D_{15} = 2(C_6 + e\dot{e}\beta^{-2}) D 15 = 2 ( C 6 + e e ˙ β − 2 )
D ˙ 1 = D 1 ( D 14 + D 15 ) \dot{D}_1 = D_1(D_{14} + D_{15}) D ˙ 1 = D 1 ( D 14 + D 15 )
D ˙ 2 = η ˙ D 11 \dot{D}_2 = \dot{\eta}D_{11} D ˙ 2 = η ˙ D 11
D ˙ 3 = η ˙ D 12 \dot{D}_3 = \dot{\eta}D_{12} D ˙ 3 = η ˙ D 12
D ˙ 4 = η ˙ D 13 \dot{D}_4 = \dot{\eta}D_{13} D ˙ 4 = η ˙ D 13
D ˙ 5 = D 5 D 14 \dot{D}_5 = D_5 D_{14} D ˙ 5 = D 5 D 14
C ˙ 2 = B 2 ( D ˙ 1 D 3 + D 1 D ˙ 3 ) \dot{C}_2 = B_2(\dot{D}_1 D_3 + D_1 \dot{D}_3) C ˙ 2 = B 2 ( D ˙ 1 D 3 + D 1 D ˙ 3 )
C ˙ 3 = B 3 ( D ˙ 5 D 4 + D 5 D ˙ 4 ) \dot{C}_3 = B_3(\dot{D}_5 D_4 + D_5 \dot{D}_4) C ˙ 3 = B 3 ( D ˙ 5 D 4 + D 5 D ˙ 4 )
ω ˙ = − 3 2 n ′ ′ k 2 a ′ ′ 2 β 4 ( 1 − 5 θ 2 ) \dot{\omega} = -\frac{3}{2} \frac{n'' k_2}{a''^2 \beta^4} (1 - 5\theta^2) ω ˙ = − 2 3 a ′′2 β 4 n ′′ k 2 ( 1 − 5 θ 2 )
D 16 = D 9 η ˙ + D 10 e ˙ + B 1 ( D ˙ 1 D 2 + D 1 D ˙ 2 ) + C ˙ 2 cos 2 ω + C ˙ 3 sin ω + ω ˙ ( C 3 cos ω − 2 C 2 sin 2 ω ) D_{16} = D_9 \dot{\eta} + D_{10} \dot{e} + B_1(\dot{D}_1 D_2 + D_1 \dot{D}_2) + \dot{C}_2 \cos 2\omega + \dot{C}_3 \sin \omega + \dot{\omega}(C_3 \cos \omega - 2C_2 \sin 2\omega) D 16 = D 9 η ˙ + D 10 e ˙ + B 1 ( D ˙ 1 D 2 + D 1 D ˙ 2 ) + C ˙ 2 cos 2 ω + C ˙ 3 sin ω + ω ˙ ( C 3 cos ω − 2 C 2 sin 2 ω )
n ¨ o = n ˙ C ˙ 1 / C 1 + C 1 D 16 \ddot{n}_o = \dot{n}\dot{C}_1/C_1 + C_1 D_{16} n ¨ o = n ˙ C ˙ 1 / C 1 + C 1 D 16
e ¨ o = e ˙ C ˙ o / C o − C o { ( 4 + 3 η 2 + 30 e η + 31 2 e 2 + 21 e 2 η 2 ) η ˙ + ( 5 + 15 η 2 + 31 e η + 14 e η 3 ) e ˙ \ddot{e}_o = \dot{e}\dot{C}_o/C_o - C_o \left\{\left(4 + 3\eta^2 + 30e\eta + \frac{31}{2}e^2 + 21e^2\eta^2\right)\dot{\eta} + (5 + 15\eta^2 + 31e\eta + 14e\eta^3)\dot{e}\right. e ¨ o = e ˙ C ˙ o / C o − C o { ( 4 + 3 η 2 + 30 eη + 2 31 e 2 + 21 e 2 η 2 ) η ˙ + ( 5 + 15 η 2 + 31 eη + 14 e η 3 ) e ˙
+ B 1 [ D ˙ 1 D 6 + D 1 η ˙ ( 30 + 135 2 η 2 ) ] + B 2 [ D ˙ 1 D 7 + D 1 η ˙ ( 5 + 75 2 η 2 ) ] cos ω \quad + B_1\left[\dot{D}_1 D_6 + D_1 \dot{\eta}\left(30 + \frac{135}{2}\eta^2\right)\right] + B_2\left[\dot{D}_1 D_7 + D_1 \dot{\eta}\left(5 + \frac{75}{2}\eta^2\right)\right]\cos\omega + B 1 [ D ˙ 1 D 6 + D 1 η ˙ ( 30 + 2 135 η 2 ) ] + B 2 [ D ˙ 1 D 7 + D 1 η ˙ ( 5 + 2 75 η 2 ) ] cos ω
+ B 3 [ D ˙ 5 D 8 + D 5 η η ˙ ( 27 2 + 4 η 2 ) ] sin ω + ω ˙ ( C 5 cos ω − 2 C 4 sin 2 ω ) } \quad + \left.B_3\left[\dot{D}_5 D_8 + D_5\eta\dot{\eta}\left(\frac{27}{2} + 4\eta^2\right)\right]\sin\omega + \dot{\omega}(C_5 \cos\omega - 2C_4 \sin 2\omega)\right\} + B 3 [ D ˙ 5 D 8 + D 5 η η ˙ ( 2 27 + 4 η 2 ) ] sin ω + ω ˙ ( C 5 cos ω − 2 C 4 sin 2 ω ) }
D 17 = n ¨ / n ′ ′ − ( n ˙ / n ′ ′ ) 2 D_{17} = \ddot{n}/n'' - (\dot{n}/n'')^2 D 17 = n ¨ / n ′′ − ( n ˙ / n ′′ ) 2
ξ ¨ / ξ = 2 ( ξ ˙ / ξ − C 6 ) ξ ˙ / ξ + 2 a ′ ′ ξ ( 1 3 D 17 β 2 − 2 C 6 e e ˙ + e ˙ 2 + e e ¨ ) \ddot{\xi}/\xi = 2(\dot{\xi}/\xi - C_6)\dot{\xi}/\xi + 2a''\xi\left(\frac{1}{3}D_{17}\beta^2 - 2C_6 e\dot{e} + \dot{e}^2 + e\ddot{e}\right) ξ ¨ / ξ = 2 ( ξ ˙ / ξ − C 6 ) ξ ˙ / ξ + 2 a ′′ ξ ( 3 1 D 17 β 2 − 2 C 6 e e ˙ + e ˙ 2 + e e ¨ )
η ¨ = ( e ¨ + 2 e ˙ ξ ˙ / ξ ) s ξ + η ξ ¨ / ξ \ddot{\eta} = (\ddot{e} + 2\dot{e}\dot{\xi}/\xi)s\xi + \eta\ddot{\xi}/\xi η ¨ = ( e ¨ + 2 e ˙ ξ ˙ / ξ ) s ξ + η ξ ¨ / ξ
D 18 = ξ ¨ / ξ − ( ξ ˙ / ξ ) 2 D_{18} = \ddot{\xi}/\xi - (\dot{\xi}/\xi)^2 D 18 = ξ ¨ / ξ − ( ξ ˙ / ξ ) 2
D 19 = − ( ψ ˙ / ψ ) 2 ( 1 + η − 2 ) − η η ¨ ψ − 2 D_{19} = -(\dot{\psi}/\psi)^2(1 + \eta^{-2}) - \eta\ddot{\eta}\psi^{-2} D 19 = − ( ψ ˙ / ψ ) 2 ( 1 + η − 2 ) − η η ¨ ψ − 2
D ¨ 1 = D ˙ 1 ( D 14 + D 15 ) + D 1 ( D 18 − 2 D 19 + 2 3 D 17 + 2 α 2 e ˙ 2 β − 4 + 2 e e ¨ β − 2 ) \ddot{D}_1 = \dot{D}_1(D_{14} + D_{15}) + D_1\left(D_{18} - 2D_{19} + \frac{2}{3}D_{17} + 2\alpha^2\dot{e}^2\beta^{-4} + 2e\ddot{e}\beta^{-2}\right) D ¨ 1 = D ˙ 1 ( D 14 + D 15 ) + D 1 ( D 18 − 2 D 19 + 3 2 D 17 + 2 α 2 e ˙ 2 β − 4 + 2 e e ¨ β − 2 )
n ... o = n ˙ [ 4 3 D 17 + 3 e ˙ 2 α − 2 + 3 e e ¨ α − 2 − 6 ( α ˙ / α ) 2 + 4 D 18 − 7 D 19 ] \dddot{n}_o = \dot{n}\left[\frac{4}{3}D_{17} + 3\dot{e}^2\alpha^{-2} + 3e\ddot{e}\alpha^{-2} - 6(\dot{\alpha}/\alpha)^2 + 4D_{18} - 7D_{19}\right] n ... o = n ˙ [ 3 4 D 17 + 3 e ˙ 2 α − 2 + 3 e e ¨ α − 2 − 6 ( α ˙ / α ) 2 + 4 D 18 − 7 D 19 ]
+ n ¨ C ˙ 1 / C 1 + C 1 { D 16 C ˙ 1 / C 1 + D 9 η ¨ + D 10 e ¨ + η ˙ 2 ( 6 + 30 e η + 68 e 2 ) \quad + \ddot{n}\dot{C}_1/C_1 + C_1\left\{D_{16}\dot{C}_1/C_1 + D_9\ddot{\eta} + D_{10}\ddot{e} + \dot{\eta}^2(6 + 30e\eta + 68e^2)\right. + n ¨ C ˙ 1 / C 1 + C 1 { D 16 C ˙ 1 / C 1 + D 9 η ¨ + D 10 e ¨ + η ˙ 2 ( 6 + 30 eη + 68 e 2 )
+ η ˙ e ˙ ( 40 + 30 η 2 + 272 e η ) + e ˙ 2 ( 17 + 68 η 2 ) \quad + \dot{\eta}\dot{e}(40 + 30\eta^2 + 272e\eta) + \dot{e}^2(17 + 68\eta^2) + η ˙ e ˙ ( 40 + 30 η 2 + 272 eη ) + e ˙ 2 ( 17 + 68 η 2 )
+ B 1 [ D ¨ 1 D 2 + 2 D ˙ 1 D ˙ 2 + D 1 ( η ¨ D 11 + η ˙ 2 ( 72 + 54 η 2 ) ) ] \quad + B_1[\ddot{D}_1 D_2 + 2\dot{D}_1 \dot{D}_2 + D_1(\ddot{\eta}D_{11} + \dot{\eta}^2(72 + 54\eta^2))] + B 1 [ D ¨ 1 D 2 + 2 D ˙ 1 D ˙ 2 + D 1 ( η ¨ D 11 + η ˙ 2 ( 72 + 54 η 2 ))]
+ B 2 [ D ¨ 1 D 3 + 2 D ˙ 1 D ˙ 3 + D 1 ( η ¨ D 12 + η ˙ 2 ( 30 + 30 η 2 ) ) ] cos 2 ω \quad + B_2[\ddot{D}_1 D_3 + 2\dot{D}_1 \dot{D}_3 + D_1(\ddot{\eta}D_{12} + \dot{\eta}^2(30 + 30\eta^2))]\cos 2\omega + B 2 [ D ¨ 1 D 3 + 2 D ˙ 1 D ˙ 3 + D 1 ( η ¨ D 12 + η ˙ 2 ( 30 + 30 η 2 ))] cos 2 ω
+ B 3 [ ( D ˙ 5 D 14 + D 5 ( D 18 − 2 D 19 ) ) D 4 + 2 D ˙ 4 D ˙ 5 + D 5 ( η ¨ D 13 + 45 2 η η ˙ 2 ) ] sin ω \quad + B_3\left[(\dot{D}_5 D_{14} + D_5(D_{18} - 2D_{19}))D_4 + 2\dot{D}_4\dot{D}_5 + D_5\left(\ddot{\eta}D_{13} + \frac{45}{2}\eta\dot{\eta}^2\right)\right]\sin\omega + B 3 [ ( D ˙ 5 D 14 + D 5 ( D 18 − 2 D 19 )) D 4 + 2 D ˙ 4 D ˙ 5 + D 5 ( η ¨ D 13 + 2 45 η η ˙ 2 ) ] sin ω
+ ω ˙ [ ( 7 C 6 + 4 e e ˙ β − 2 ) ( C 3 cos ω − 2 C 2 sin 2 ω ) + 2 C 3 cos ω \quad + \dot{\omega}[(7C_6 + 4e\dot{e}\beta^{-2})(C_3 \cos\omega - 2C_2 \sin 2\omega) + 2C_3 \cos\omega + ω ˙ [( 7 C 6 + 4 e e ˙ β − 2 ) ( C 3 cos ω − 2 C 2 sin 2 ω ) + 2 C 3 cos ω
− 4 C 2 sin 2 ω − ω ˙ ( C 3 sin ω + 4 C 2 cos 2 ω ) ] } \quad\left. - 4C_2 \sin 2\omega - \dot{\omega}(C_3 \sin\omega + 4C_2 \cos 2\omega)]\right\} − 4 C 2 sin 2 ω − ω ˙ ( C 3 sin ω + 4 C 2 cos 2 ω )] }
p = 2 n ¨ o 2 − n ˙ o n ... o n ¨ o 2 − n ˙ o n ... o p = \frac{2\ddot{n}_o^2 - \dot{n}_o\,\dddot{n}_o}{\ddot{n}_o^2 - \dot{n}_o\,\dddot{n}_o} p = n ¨ o 2 − n ˙ o n ... o 2 n ¨ o 2 − n ˙ o n ... o
γ = − n ... o n ¨ o 1 ( p − 2 ) \gamma = -\frac{\dddot{n}_o}{\ddot{n}_o}\frac{1}{(p - 2)} γ = − n ¨ o n ... o ( p − 2 ) 1
n D = n ˙ o p γ n_D = \frac{\dot{n}_o}{p\gamma} n D = p γ n ˙ o
q = 1 − e ¨ o e ˙ o γ q = 1 - \frac{\ddot{e}_o}{\dot{e}_o \gamma} q = 1 − e ˙ o γ e ¨ o
e D = e ˙ o q γ e_D = \frac{\dot{e}_o}{q\gamma} e D = q γ e ˙ o
where all quantities are epoch values.
The secular effects of atmospheric drag and gravitation are included by
n = n o ′ ′ + n D [ 1 − ( 1 − γ ( t − t o ) ) p ] n = n''_o + n_D[1 - (1 - \gamma(t - t_o))^p] n = n o ′′ + n D [ 1 − ( 1 − γ ( t − t o ) ) p ]
e = e o + e D [ 1 − ( 1 − γ ( t − t o ) ) q ] e = e_o + e_D[1 - (1 - \gamma(t - t_o))^q] e = e o + e D [ 1 − ( 1 − γ ( t − t o ) ) q ]
ω = ω o + ω ˙ 1 [ ( t − t o ) + 7 3 1 n o ′ ′ Z 1 ] + ω ˙ 2 ( t − t o ) \omega = \omega_o + \dot{\omega}_1\left[(t - t_o) + \frac{7}{3}\frac{1}{n''_o}Z_1\right] + \dot{\omega}_2(t - t_o) ω = ω o + ω ˙ 1 [ ( t − t o ) + 3 7 n o ′′ 1 Z 1 ] + ω ˙ 2 ( t − t o )
Ω = Ω o ′ ′ + Ω ˙ 1 [ ( t − t o ) + 7 3 1 n o ′ ′ Z 1 ] + Ω ˙ 2 ( t − t o ) \Omega = \Omega''_o + \dot{\Omega}_1\left[(t - t_o) + \frac{7}{3}\frac{1}{n''_o}Z_1\right] + \dot{\Omega}_2(t - t_o) Ω = Ω o ′′ + Ω ˙ 1 [ ( t − t o ) + 3 7 n o ′′ 1 Z 1 ] + Ω ˙ 2 ( t − t o )
M = M o + n o ′ ′ ( t − t o ) + Z 1 + M ˙ 1 [ ( t − t o ) + 7 3 1 n o ′ ′ Z 1 ] + M ˙ 2 ( t − t o ) M = M_o + n''_o(t - t_o) + Z_1 + \dot{M}_1\left[(t - t_o) + \frac{7}{3}\frac{1}{n''_o}Z_1\right] + \dot{M}_2(t - t_o) M = M o + n o ′′ ( t − t o ) + Z 1 + M ˙ 1 [ ( t − t o ) + 3 7 n o ′′ 1 Z 1 ] + M ˙ 2 ( t − t o )
where
Z 1 = n ˙ o p γ { ( t − t o ) + 1 γ ( p + 1 ) [ ( 1 − γ ( t − t o ) ) p + 1 − 1 ] } . Z_1 = \frac{\dot{n}_o}{p\gamma}\left\{(t - t_o) + \frac{1}{\gamma(p + 1)}[(1 - \gamma(t - t_o))^{p+1} - 1]\right\}. Z 1 = p γ n ˙ o { ( t − t o ) + γ ( p + 1 ) 1 [( 1 − γ ( t − t o ) ) p + 1 − 1 ] } .
If drag is very small (n ˙ n o ′ ′ \frac{\dot{n}}{n''_o} n o ′′ n ˙ less than 1.5 × 10 − 6 1.5 \times 10^{-6} 1.5 × 1 0 − 6 /min) then the secular equations for n n n , e e e , and Z 1 Z_1 Z 1 should be replaced by
n = n o ′ ′ + n ˙ ( t − t o ) n = n''_o + \dot{n}(t - t_o) n = n o ′′ + n ˙ ( t − t o )
e = e o ′ ′ + e ˙ ( t − t o ) e = e''_o + \dot{e}(t - t_o) e = e o ′′ + e ˙ ( t − t o )
Z 1 = 1 2 n ˙ o ( t − t o ) 2 Z_1 = \frac{1}{2}\dot{n}_o(t - t_o)^2 Z 1 = 2 1 n ˙ o ( t − t o ) 2
where ( t − t o ) (t - t_o) ( t − t o ) is time since epoch and where
e ˙ = − 2 3 n ˙ o n o ′ ′ ( 1 − e o ) . \dot{e} = -\frac{2}{3}\frac{\dot{n}_o}{n''_o}(1 - e_o). e ˙ = − 3 2 n o ′′ n ˙ o ( 1 − e o ) .
Solve Kepler’s equation for E E E by using the iteration equation
E i + 1 = E i + Δ E i E_{i+1} = E_i + \Delta E_i E i + 1 = E i + Δ E i
with
Δ E i = M + e sin E i − E i 1 − e cos E i \Delta E_i = \frac{M + e\sin E_i - E_i}{1 - e\cos E_i} Δ E i = 1 − e c o s E i M + e s i n E i − E i
and
E 1 = M + e sin M + 1 2 e 2 sin 2 M . E_1 = M + e\sin M + \frac{1}{2}e^2\sin 2M. E 1 = M + e sin M + 2 1 e 2 sin 2 M .
The following equations are used to calculate preliminary quantities needed for the short-period periodics.
a = ( k e n ) 2 3 a = \left(\frac{k_e}{n}\right)^{\frac{2}{3}} a = ( n k e ) 3 2
β = ( 1 − e 2 ) 1 2 \beta = (1 - e^2)^{\frac{1}{2}} β = ( 1 − e 2 ) 2 1
sin f = β sin E 1 − e cos E \sin f = \frac{\beta\sin E}{1 - e\cos E} sin f = 1 − e c o s E β s i n E
cos f = cos E − e 1 − e cos E \cos f = \frac{\cos E - e}{1 - e\cos E} cos f = 1 − e c o s E c o s E − e
u = f + ω u = f + \omega u = f + ω
r ′ ′ = a β 2 1 + e cos f r'' = \frac{a\beta^2}{1 + e\cos f} r ′′ = 1 + e c o s f a β 2
r ˙ ′ ′ = n a e β sin f \dot{r}'' = \frac{nae}{\beta}\sin f r ˙ ′′ = β na e sin f
( r f ˙ ) ′ ′ = n a 2 β r (r\dot{f})'' = \frac{na^2\beta}{r} ( r f ˙ ) ′′ = r n a 2 β
δ r = 1 2 k 2 a β 2 [ ( 1 − θ 2 ) cos 2 u + 3 ( 1 − 3 θ 2 ) ] − 1 4 A 3 , 0 k 2 sin i o sin u \delta r = \frac{1}{2}\frac{k_2}{a\beta^2}[(1 - \theta^2)\cos 2u + 3(1 - 3\theta^2)] - \frac{1}{4}\frac{A_{3,0}}{k_2}\sin i_o \sin u δr = 2 1 a β 2 k 2 [( 1 − θ 2 ) cos 2 u + 3 ( 1 − 3 θ 2 )] − 4 1 k 2 A 3 , 0 sin i o sin u
δ r ˙ = − n ( a r ) 2 [ k 2 a β 2 ( 1 − θ 2 ) sin 2 u + 1 4 A 3 , 0 k 2 sin i o cos u ] \delta\dot{r} = -n\left(\frac{a}{r}\right)^2\left[\frac{k_2}{a\beta^2}(1 - \theta^2)\sin 2u + \frac{1}{4}\frac{A_{3,0}}{k_2}\sin i_o \cos u\right] δ r ˙ = − n ( r a ) 2 [ a β 2 k 2 ( 1 − θ 2 ) sin 2 u + 4 1 k 2 A 3 , 0 sin i o cos u ]
δ I = θ [ 3 2 k 2 a 2 β 4 sin i o cos 2 u − 1 4 A 3 , 0 k 2 a β 2 e sin ω ] \delta I = \theta\left[\frac{3}{2}\frac{k_2}{a^2\beta^4}\sin i_o \cos 2u - \frac{1}{4}\frac{A_{3,0}}{k_2 a\beta^2}e\sin\omega\right] δ I = θ [ 2 3 a 2 β 4 k 2 sin i o cos 2 u − 4 1 k 2 a β 2 A 3 , 0 e sin ω ]
δ ( r f ˙ ) = − n ( a r ) 2 δ r + n a ( a r ) sin i o θ δ I \delta(r\dot{f}) = -n\left(\frac{a}{r}\right)^2\delta r + na\left(\frac{a}{r}\right)\frac{\sin i_o}{\theta}\delta I δ ( r f ˙ ) = − n ( r a ) 2 δr + na ( r a ) θ s i n i o δ I
δ u = 1 2 k 2 a 2 β 4 [ 1 2 ( 1 − 7 θ 2 ) sin 2 u − 3 ( 1 − 5 θ 2 ) ( f − M + e sin f ) ] \delta u = \frac{1}{2}\frac{k_2}{a^2\beta^4}\left[\frac{1}{2}(1 - 7\theta^2)\sin 2u - 3(1 - 5\theta^2)(f - M + e\sin f)\right] δ u = 2 1 a 2 β 4 k 2 [ 2 1 ( 1 − 7 θ 2 ) sin 2 u − 3 ( 1 − 5 θ 2 ) ( f − M + e sin f ) ]
− 1 4 A 3 , 0 k 2 a β 2 [ sin i o cos u ( 2 + e cos f ) + 1 2 θ 2 sin i o / 2 cos i o / 2 e cos ω ] \quad - \frac{1}{4}\frac{A_{3,0}}{k_2 a\beta^2}\left[\sin i_o \cos u(2 + e\cos f) + \frac{1}{2}\frac{\theta^2}{\sin i_o/2\;\cos i_o/2}e\cos\omega\right] − 4 1 k 2 a β 2 A 3 , 0 [ sin i o cos u ( 2 + e cos f ) + 2 1 s i n i o /2 c o s i o /2 θ 2 e cos ω ]
δ λ = 1 2 k 2 a 2 β 4 [ 1 2 ( 1 + 6 θ − 7 θ 2 ) sin 2 u − 3 ( 1 + 2 θ − 5 θ 2 ) ( f − M + e sin f ) ] \delta\lambda = \frac{1}{2}\frac{k_2}{a^2\beta^4}\left[\frac{1}{2}(1 + 6\theta - 7\theta^2)\sin 2u - 3(1 + 2\theta - 5\theta^2)(f - M + e\sin f)\right] δ λ = 2 1 a 2 β 4 k 2 [ 2 1 ( 1 + 6 θ − 7 θ 2 ) sin 2 u − 3 ( 1 + 2 θ − 5 θ 2 ) ( f − M + e sin f ) ]
+ 1 4 A 3 , 0 k 2 a β 2 sin i o [ e θ 1 + θ cos ω − ( 2 + e cos f ) cos u ] \quad + \frac{1}{4}\frac{A_{3,0}}{k_2 a\beta^2}\sin i_o\left[\frac{e\theta}{1 + \theta}\cos\omega - (2 + e\cos f)\cos u\right] + 4 1 k 2 a β 2 A 3 , 0 sin i o [ 1 + θ e θ cos ω − ( 2 + e cos f ) cos u ]
The short-period periodics are added to give the osculating quantities
r = r ′ ′ + δ r r = r'' + \delta r r = r ′′ + δr
r ˙ = r ˙ ′ ′ + δ r ˙ \dot{r} = \dot{r}'' + \delta\dot{r} r ˙ = r ˙ ′′ + δ r ˙
r f ˙ = ( r f ˙ ) ′ ′ + δ ( r f ˙ ) r\dot{f} = (r\dot{f})'' + \delta(r\dot{f}) r f ˙ = ( r f ˙ ) ′′ + δ ( r f ˙ )
y 4 = sin i o 2 sin u + cos u sin i o 2 δ u + 1 2 sin u cos i o 2 δ I y_4 = \sin\frac{i_o}{2}\sin u + \cos u\sin\frac{i_o}{2}\delta u + \frac{1}{2}\sin u\cos\frac{i_o}{2}\delta I y 4 = sin 2 i o sin u + cos u sin 2 i o δ u + 2 1 sin u cos 2 i o δ I
y 5 = sin i o 2 cos u − sin u sin i o 2 δ u + 1 2 cos u cos i o 2 δ I y_5 = \sin\frac{i_o}{2}\cos u - \sin u\sin\frac{i_o}{2}\delta u + \frac{1}{2}\cos u\cos\frac{i_o}{2}\delta I y 5 = sin 2 i o cos u − sin u sin 2 i o δ u + 2 1 cos u cos 2 i o δ I
λ = u + Ω + δ λ . \lambda = u + \Omega + \delta\lambda. λ = u + Ω + δ λ .
Unit orientation vectors are calculated by
U x = 2 y 4 ( y 5 sin λ − y 4 cos λ ) + cos λ U_x = 2y_4(y_5\sin\lambda - y_4\cos\lambda) + \cos\lambda U x = 2 y 4 ( y 5 sin λ − y 4 cos λ ) + cos λ
U y = − 2 y 4 ( y 5 cos λ + y 4 sin λ ) + sin λ U_y = -2y_4(y_5\cos\lambda + y_4\sin\lambda) + \sin\lambda U y = − 2 y 4 ( y 5 cos λ + y 4 sin λ ) + sin λ
U z = 2 y 4 cos I 2 U_z = 2y_4\cos\frac{I}{2} U z = 2 y 4 cos 2 I
V x = 2 y 5 ( y 5 sin λ − y 4 cos λ ) − sin λ V_x = 2y_5(y_5\sin\lambda - y_4\cos\lambda) - \sin\lambda V x = 2 y 5 ( y 5 sin λ − y 4 cos λ ) − sin λ
V y = − 2 y 5 ( y 5 cos λ + y 4 sin λ ) + cos λ V_y = -2y_5(y_5\cos\lambda + y_4\sin\lambda) + \cos\lambda V y = − 2 y 5 ( y 5 cos λ + y 4 sin λ ) + cos λ
V z = 2 y 5 cos I 2 V_z = 2y_5\cos\frac{I}{2} V z = 2 y 5 cos 2 I
where
cos I 2 = 1 − y 4 2 − y 5 2 . \cos\frac{I}{2} = \sqrt{1 - y_4^2 - y_5^2}. cos 2 I = 1 − y 4 2 − y 5 2 .
Position and velocity are given by
r = r U \mathbf{r} = r\mathbf{U} r = r U
r ˙ = r ˙ U + r f ˙ V . \dot{\mathbf{r}} = \dot{r}\mathbf{U} + r\dot{f}\mathbf{V}. r ˙ = r ˙ U + r f ˙ V .
A FORTRAN IV computer code listing of the subroutine SGP8 is given below.
SUBROUTINE SGP8 ( IFLAG , TSINCE )
COMMON /E1/XMO,XNODEO,OMEGAO,EO,XINCL,XNO,XNDT2O,
1 XNDD6O,BSTAR,X,Y,Z,XDOT,YDOT,ZDOT,EPOCH,DS50
COMMON /C1/CK2,CK4,E6A,QOMS2T,S,TOTHRD,
1 XJ3,XKE,XKMPER,XMNPDA,AE
DOUBLE PRECISION EPOCH, DS50
IF (IFLAG .EQ. 0 ) GO TO 100
* RECOVER ORIGINAL MEAN MOTION (XNODP) AND SEMIMAJOR AXIS (AODP)
* FROM INPUT ELEMENTS --------- CALCULATE BALLISTIC COEFFICIENT
* (B TERM) FROM INPUT B * DRAG TERM
DEL1 = 1.5 * CK2 * TTHMUN/(A1 * A1 * BETAO * BETAO2)
AO = A1 * ( 1. - DEL1 * ( .5 * TOTHRD + DEL1 * ( 1.+134. / 81. * DEL1)))
DELO = 1.5 * CK2 * TTHMUN/(AO * AO * BETAO * BETAO2)
PARDT4 = 1.25 * CK4 * POM2 * POM2 * XNODP
XMDT1 = .5 * PARDT1 * BETAO * TTHMUN
2 .0625 * PARDT2 * BETAO * ( 13.-78. * THETA2 +137. * THETA4)
1 .0625 * PARDT2 * ( 7.-114. * THETA2 +395. * THETA4) + PARDT4 * ( 3.-36. *
1 ( .5 * PARDT2 * ( 4.-19. * THETA2) +2. * PARDT4 * ( 3.-7. * THETA2)) * COSI
D2 = 12. + ETA2 * ( 36.+4.5 * ETA2)
C0 = .5 * B * RHO * QOMS2T * XNODP * AODP * TSI ** 4 * PSIM2 ** 3.5 / SQRT (ALPHA2)
C1 = 1.5 * XNODP * ALPHA2 ** 2 * C0
1 ( 2. + ETA2 * ( 3.+34. * EOSQ) +5. * EETA * ( 4. + ETA2) +8.5 * EOSQ) +
1 D1 * D2 * B1 + C4 * COS2G + C5 * SING)
* IF DRAG IS VERY SMALL, THE ISIMP FLAG IS SET AND THE
* EQUATIONS ARE TRUNCATED TO LINEAR VARIATION IN MEAN
* MOTION AND QUADRATIC VARIATION IN MEAN ANOMALY
IF ( ABS (XNDTN * XMNPDA) .LT. 2.16E-3 ) GO TO 50
1 ETA * ( 4. + ETA2 + EOSQ * ( 15.5+7. * ETA2)) + EO * ( 5.+15. * ETA2) +
TSDTTS = 2. * AODP * TSI * (D20 * BETAO2 + EO * EDOT)
ETDT = (EDOT + EO * TSDTTS) * TSI * S
C0DTC0 = D20 +4. * TSDTTS - ALDTAL -7. * PSDTPS
C1DTC1 = XNDTN +4. * ALDTAL + C0DTC0
D9 = ETA * ( 6.+68. * EOSQ) + EO * ( 20.+15. * ETA2)
D10 = 5. * ETA * ( 4. + ETA2) + EO * ( 17.+68. * ETA2)
D15 = 2. * (D20 + EO * EDOT/BETAO2)
C4DT = B2 * (D1DT * D3 + D1 * D3DT)
C5DT = B3 * (D5DT * D4 + D5 * D4DT)
1 C4DT * COS2G + C5DT * SING + XGDT1 * (C5 * COSG -2. * C4 * SIN2G)
1 ( 4.+3. * ETA2 +30. * EETA + EOSQ * ( 15.5+21. * ETA2)) * ETDT + ( 5.+15. * ETA2
' +EETA*(31.+14.*ETA2))*EDOT +
1 B1*(D1DT*D6+D1*ETDT*(30.+67.5*ETA2)) +
1 B2*(D1DT*D7+D1*ETDT*(5.+37.5*ETA2))*COS2G+
1 B3*(D5DT*D8+D5*ETDT*ETA*(13.5+4.*ETA2))*SING+XGDT1*(C9*
TSDDTS = 2. * TSDTTS * (TSDTTS - D20) + AODP * TSI * (TOTHRD * BETAO2 * D17 -4. * D20 *
' EO*EDOT+2.*(D25+EO*EDDOT))
ETDDT =(EDDOT+2.*EDOT*TSDTTS)*TSI*S+TSDDTS*ETA
D19=-PSDTPS**2/ETA2-ETA*ETDDT*PSIM2-PSDTPS**2
D1DDT=D1DT*(D14+D15)+D1*(D18-2.*D19+TOTHRD*D17+2.*(ALPHA2*D25
' /BETAO2 + EO * EDDOT)/BETAO2)
XNTRDT = XNDT * ( 2. * TOTHRD * D17 +3. *
1 (D25 + EO * EDDOT)/ALPHA2 -6. * ALDTAL ** 2 +
1 C1DTC1 * XNDDT + C1 * (C1DTC1 * D16 +
1 D9 * ETDDT + D10 * EDDOT + D23 * ( 6.+30. * EETA +68. * EOSQ) +
' ETA2+272.*EETA)+D25*(17.+68.*ETA2) +
1 B1*(D1DDT*D2+2.*D1DT*D2DT+D1*(ETDDT*D11+D23*(72.+54.*ETA2))) +
1 B2*(D1DDT*D3+2.*D1DT*D3DT+D1*(ETDDT*D12+D23*(30.+30.*ETA2))) *
1 B3*((D5DT*D14+D5*(D18-2.*D19)) *
1 D4+2.*D4DT*D5DT+D5*(ETDDT*D13+22.5*ETA*D23)) *SING+XGDT1*
1 ((7.*D20+4.*EO*EDOT/BETAO2)*
' +((2.*C5DT*COSG-4.*C4DT*SIN2G)-XGDT1*(C5*SING+4.*
TEMP = TMNDDT ** 2 - XNDT * 1.E18 * XNTRDT
GAMMA = - XNTRDT/(XNDDT * (PP -2. ))
EDOT = - TOTHRD * XNDTN * ( 1. - EO)
* UPDATE FOR SECULAR GRAVITY AND ATMOSPHERIC DRAG
100 XMAM = FMOD2P(XMO + XLLDOT * TSINCE)
OMGASM = OMEGAO + OMGDT * TSINCE
XNODES = XNODEO + XNODOT * TSINCE
IF (ISIMP .EQ. 1 ) GO TO 105
Z1 = XND * (TSINCE + OVGPP * (TEMP * TEMP1 -1. ))
108 Z7 = 3.5 * TOTHRD * Z1/XNODP
XMAM = FMOD2P(XMAM + Z1 + Z7 * XMDT1)
ZC2 = XMAM + EM * SIN (XMAM) * ( 1. + EM * COS (XMAM))
IF ( ABS (CAPE - ZC2) .LE. E6A) GO TO 140
* SHORT PERIOD PRELIMINARY QUANTITIES
DR = G2 * (UNMTH2 * CS2F2G -3. * TTHMUN) - G4 * SNFG
DIWC = 3. * G3 * SINI * CS2F2G - G5 * AYNM
* UPDATE FOR SHORT PERIOD PERIODICS
1 G3 * ( .5 * ( 1.-7. * THETA2) * SN2F2G -3. * UNM5TH * G10) - G5 * SINI * CSFG * ( 2. +
2 ECOSF)) -.5 * G5 * THETA2 * AXNM/COSIO2
XLAMB = FM + OMGASM + XNODES + G3 * ( .5 * ( 1.+6. * COSI -7. * THETA2) * SN2F2G -3. *
1 (UNM5TH +2. * COSI) * G10) + G5 * SINI * (COSI * AXNM/( 1. + COSI) - ( 2.
Y4 = SINIO2 * SNFG + CSFG * SNI2DU +.5 * SNFG * COSIO2 * DI
Y5 = SINIO2 * CSFG - SNFG * SNI2DU +.5 * CSFG * COSIO2 * DI
RDOT = XN * AM * EM * SNF/BETA + G14 * ( 2. * G2 * UNMTH2 * SN2F2G + G4 * CSFG)
1 G14 * DR + AM * G13 * SINI * DIWC
TEMP = 2. * (Y5 * SNLAMB - Y4 * CSLAMB)
TEMP = 2. * (Y5 * CSLAMB + Y4 * SNLAMB)
TEMP = 2. * SQRT ( 1. - Y4 * Y4 - Y5 * Y5)