Skip to content

Appendix C: TEME Coordinate System

This appendix describes the equations necessary to implement the nutation equations for the TEME (True Equator, Mean Equinox) approach. There are two approaches:

  1. Using the GMST (Greenwich Mean Sidereal Time)
  2. Using the equation of the equinoxes

GMST is found using UT1. From McCarthy (1992:30):

\theta_{GMST1982} = 67{,}310.548\,41^s + (876{,}600^h + 8{,}640{,}184.812\,866^s) T_{UT1} + 0.093\,104 \, T_{UT1}^2 - 6.2 \times 10^{-6} \, T_{UT1}^3 \tag{C-1}

The transformation to ITRF is found using the polar motion (xpx_p, ypy_p) values and the GMST. Note that “PEF” implies the pseudo-Earth-fixed frame, where polar motion has not yet been applied (Vallado, 2007:214).

[\mathbf{W}]_{ITRF-PEF} = ROT1(y_p) \, ROT2(x_p) \tag{C-2a}

\vec{r}_{ITRF} = [\mathbf{W}]_1^T \left[ ROT3(\theta_{GMST1982}) \right]^T \vec{r}_{TEME} \tag{C-2b}

\vec{v}_{ITRF} = [\mathbf{W}]_1^T \left\{ ROT3(\theta_{GMST1982}) \right\}^T \left[ \dot{\vec{v}}_{TEME} + \vec{\omega}_{\oplus} \times \vec{r}_{PEF} \right\} \tag{C-2c}

If the equation of the equinox approach is taken, you must find the nutation parameters. The IAU-80 nutation uses so-called Delaunay variables and coefficients to calculate nutation in longitude (Δψ1980\Delta\psi_{1980}) and nutation in the obliquity of the ecliptic (Δε1980\Delta\varepsilon_{1980}). From McCarthy (1992:32):

M_\ell = 134.962\,981\,39^\circ + 1{,}717{,}915{,}922.6330^\circ T_{TT} + 31.31 T_{TT}^2 + 0.064 T_{TT}^3 \tag{C-3a}

M_O = 357.527\,723\,33^\circ + 129{,}596{,}581.2240^\circ T_{TT} - 0.577 T_{TT}^2 + 0.012 T_{TT}^3 \tag{C-3b}

\mu_\ell = 93.271\,910\,28^\circ + 1{,}739{,}527{,}263.1370^\circ T_{TT} - 13.257 T_{TT}^2 - 0.011 T_{TT}^3 \tag{C-3c}

D_O = 297.850\,363\,06^\circ + 1{,}602{,}961{,}601.3280^\circ T_{TT} - 6.891 T_{TT}^2 + 0.019 T_{TT}^3 \tag{C-3d}

\Omega_\ell = 125.044\,522\,22^\circ - 6{,}962{,}890.5390^\circ T_{TT} + 7.455 T_{TT}^2 + 0.008 T_{TT}^3 \tag{C-3e}

Where:

  • MM_\ell — Mean anomaly of the Moon (l)
  • MOM_O — Mean anomaly of the Sun (l’)
  • μ\mu_\ell — Mean argument of latitude of the Moon (F)
  • DOD_O — Mean elongation of the Moon from the Sun (D)
  • Ω\Omega_\ell — Mean longitude of the ascending node of the Moon (Ω\Omega)

The nutation parameters are then found using (McCarthy, 1992:33):

a_{p_i} = a_{e1_i} M_\ell + a_{e2_i} M_O + a_{e3_i} \mu_\ell + a_{e4_i} D_O + a_{e5_i} \Omega_\ell \tag{C-4a}

\Delta\psi = \sum_{i=1}^{106} (A_{p_i} + A_{p1_i} T_{TDB}) \sin(a_{p_i}) \tag{C-4b}

\Delta\varepsilon = \sum_{i=1}^{106} (A_{e_i} + A_{e1_i} T_{TDB}) \cos(a_{p_i}) \tag{C-4c}

Corrections to the nutation parameters (δΔψ1980\delta\Delta\psi_{1980} and δΔε1980\delta\Delta\varepsilon_{1980}) supplied as Earth Orientation Parameters (EOP) from the IERS are simply added to the resulting values in Eq. C-4 to provide compatibility with the newer IAU 2000 Resolutions (Kaplan, 2005). These corrections also include effects from Free Core Nutation (FCN) that correct errors in the IAU-76 precession and IAU-80 nutation. However for TEME, these corrections do not appear to be used.

The nutation parameters let us find the true obliquity of the ecliptic, ε\varepsilon. From McCarthy (1992:29—31):

\Delta\psi_{1980} = \Delta\psi + \delta\Delta\psi_{1980} \tag{C-5a}

\Delta\varepsilon_{1980} = \Delta\varepsilon + \delta\Delta\varepsilon_{1980} \tag{C-5b}

\bar{\varepsilon} = 84{,}381.448^{\prime\prime} - 46.8150 T_{TT} - 0.000\,59 T_{TT}^2 + 0.001\,813 T_{TT}^3 \tag{C-5c}

\varepsilon = \bar{\varepsilon} + \Delta\varepsilon_{1980} \tag{C-5d}

The equation of the equinoxes (EQeqe1980EQ_{eqe1980}) can then be found. The last two terms in the EQeqe1980EQ_{eqe1980} are probably not included in AFSPC formulations. From McCarthy (1992:30):

EQ_{eqe1980} = \Delta\psi_{1980} \cos(\bar{\varepsilon}) + 0.002\,64^{\prime\prime} \sin(\Omega_\ell) + 0.000\,063^{\prime\prime} \sin(2\Omega_\ell) \tag{C-6a}

\theta_{GMST1982} = 67{,}310.548\,41^s + (876{,}600^h + 8{,}640{,}184.812\,866^s) T_{UT1} + 0.093\,104 \, T_{UT1}^2 - 6.2 \times 10^{-6} \, T_{UT1}^3 \tag{C-6b}

\theta_{GAST1982} = \theta_{GMST1982} + EQ_{eqe1980} \tag{C-6c}

These relations let us form the transformation equations:

[\mathbf{P}]_{MOD \to J2000} = ROT3(\zeta) \, ROT2(-\Theta) \, ROT3(z) \tag{C-7a}

[\mathbf{N}]_{TOD \to MOD} = ROT1(-\bar{\varepsilon}) \, ROT3(\Delta\Psi) \, ROT1(\varepsilon) \tag{C-7b}

\vec{r}_{J2000} = [\mathbf{P}][\mathbf{N}]\left[ROT3(-EQ_{eqe1980})\right] \vec{r}_{TEME} \tag{C-7c}

\vec{v}_{J2000} = [\mathbf{P}][\mathbf{N}]\left[ROT3(-EQ_{eqe1980})\right] \vec{v}_{TEME} \tag{C-7d}

An example is useful to show the various options and their effect on the resulting vectors. Consider an initial ECI (J2000.0, IAU76/FK5) state vector.

June 28, 2000, 15:8:51.655 000 UTC
dUT1 = 0.162 360 s, dAT = 21 s, x_p = 0.098 700", y_p = 0.286 000"
r_J2000 = 3961.744 260 3 6010.215 610 9 4619.362 575 8 km
v_J2000 = -5.314 643 386 3.964 357 585 1.752 939 153 km/s

Converting without the nutation corrections (δΔψ1980\delta\Delta\psi_{1980} and δΔε1980\delta\Delta\varepsilon_{1980}), but using the two additional terms with EQeqe1980EQ_{eqe1980}:

JD_UT1 = 2,451,724.131 155 293 40
T_TT = 0.004 904 360 547
r_TOD = 3961.421 498 5 6010.475 268 8 4619.301 531 0 km
v_TOD = -5.314 833 569 3.964 181 915 1.752 759 802 km/s
r_PEF = 298.803 632 8 -7192.314 622 9 4619.301 531 0 km
v_PEF = 6.105 014 271 -0.131 824 177 1.752 759 802 km/s

Using equations (C-3) to (C-6) to find the approximate parameters (with 4 nutation terms in Eq (C-4), no additional two terms in Eq (C-6), and no small angle approximations), then transforming TOD or PEF to TEME using Eq (C-7) or Eq (C-2) respectively:

r_TEME = 3961.003 549 8 6010.751 174 0 4619.300 930 1 km
v_TEME = -5.315 109 069 3.963 813 071 1.752 758 562 km/s

Notice this vector is “in between” TOD and PEF, but much closer to the TOD value — a reason it is sometimes (imprecisely) considered “inertial”. The authors consider these numbers are within a few mm of CMOC results.

TEME “of date” vs. “of epoch” Demonstration

Section titled “TEME “of date” vs. “of epoch” Demonstration”

Using the following TLE data at epoch and at 3 days into the future:

1 00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753
2 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667

TEME vector at a time 3 days in the future (day = 182.784 950 62) from TLE epoch:

r_TEME = -9060.473 735 69 4658.709 525 02 813.686 731 53 km
v_TEME = -2.232 832 783 -4.110 453 490 -3.157 345 433 km/s

Nutation Transformation Matrix (“of date”)

Section titled “Nutation Transformation Matrix (“of date”)”

[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999\,999\,999\,56 & 0.000\,000\,000\,00 & 0.000\,029\,505\,95 \\ -0.000\,000\,000\,65 & 0.999\,999\,999\,76 & 0.000\,022\,007\,05 \\ -0.000\,029\,505\,95 & 0.000\,022\,007\,05 & 0.999\,999\,999\,32 \end{bmatrix} \tag{C-8}

Using Eq (7), the inertial (“J2000”) vector at the future time:

r_J2000 = -9059.941 378 6 4659.697 200 0 813.958 887 5 km
v_J2000 = -2.233 348 094 -4.110 136 162 -3.157 394 074 km/s

Nutation Transformation Matrix (“of epoch”)

Section titled “Nutation Transformation Matrix (“of epoch”)”

For the future time using the “of epoch” option, the nutation matrix is found at the epoch time as:

[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999\,999\,999\,55 & 0.000\,000\,000\,00 & 0.000\,030\,111\,90 \\ -0.000\,000\,000\,66 & 0.999\,999\,999\,76 & 0.000\,021\,766\,37 \\ -0.000\,030\,111\,90 & 0.000\,021\,766\,37 & 0.999\,999\,999\,31 \end{bmatrix} \tag{C-9}

And the resulting vector is:

r_J2000 = -9059.951 079 9 4659.680 755 6 813.945 045 1 km
v_J2000 = -2.233 336 111 -4.110 141 024 -3.157 396 220 km/s

This is a difference of 23.6 m in just 3 days.

FrameFull NameDescription
J2000J2000.0 ECIMean equator and equinox of J2000.0 epoch (inertial)
MODMean of DatePrecessed from J2000 to date (mean equator/equinox of date)
TODTrue of DateNutated from MOD (true equator/equinox of date)
TEMETrue Equator, Mean EquinoxSGP4 output frame — between TOD and PEF
PEFPseudo Earth FixedRotated from TOD/TEME by sidereal time (no polar motion)
ITRFInternational Terrestrial Reference FrameEarth-fixed, includes polar motion
J2000 --[P]---> MOD --[N]---> TOD --[R3(EQ_eqe)]---> TEME
|
[R3(GAST)]
|
v
PEF --[W]---> ITRF

Where:

  • [P][\mathbf{P}] is the IAU-76 precession matrix
  • [N][\mathbf{N}] is the IAU-80 nutation matrix
  • [W][\mathbf{W}] is the polar motion matrix
  • GMST/GAST provides the sidereal rotation