Appendix C: TEME Coordinate System
Overview
Section titled “Overview”This appendix describes the equations necessary to implement the nutation equations for the TEME (True Equator, Mean Equinox) approach. There are two approaches:
- Using the GMST (Greenwich Mean Sidereal Time)
- Using the equation of the equinoxes
Sidereal Time (GMST)
Section titled “Sidereal Time (GMST)”GMST is found using UT1. From McCarthy (1992:30):
\theta_{GMST1982} = 67{,}310.548\,41^s + (876{,}600^h + 8{,}640{,}184.812\,866^s) T_{UT1} + 0.093\,104 \, T_{UT1}^2 - 6.2 \times 10^{-6} \, T_{UT1}^3 \tag{C-1}
Transformation to ITRF
Section titled “Transformation to ITRF”The transformation to ITRF is found using the polar motion (, ) values and the GMST. Note that “PEF” implies the pseudo-Earth-fixed frame, where polar motion has not yet been applied (Vallado, 2007:214).
[\mathbf{W}]_{ITRF-PEF} = ROT1(y_p) \, ROT2(x_p) \tag{C-2a}
\vec{r}_{ITRF} = [\mathbf{W}]_1^T \left[ ROT3(\theta_{GMST1982}) \right]^T \vec{r}_{TEME} \tag{C-2b}
\vec{v}_{ITRF} = [\mathbf{W}]_1^T \left\{ ROT3(\theta_{GMST1982}) \right\}^T \left[ \dot{\vec{v}}_{TEME} + \vec{\omega}_{\oplus} \times \vec{r}_{PEF} \right\} \tag{C-2c}
IAU-80 Nutation: Delaunay Variables
Section titled “IAU-80 Nutation: Delaunay Variables”If the equation of the equinox approach is taken, you must find the nutation parameters. The IAU-80 nutation uses so-called Delaunay variables and coefficients to calculate nutation in longitude () and nutation in the obliquity of the ecliptic (). From McCarthy (1992:32):
M_\ell = 134.962\,981\,39^\circ + 1{,}717{,}915{,}922.6330^\circ T_{TT} + 31.31 T_{TT}^2 + 0.064 T_{TT}^3 \tag{C-3a}
M_O = 357.527\,723\,33^\circ + 129{,}596{,}581.2240^\circ T_{TT} - 0.577 T_{TT}^2 + 0.012 T_{TT}^3 \tag{C-3b}
\mu_\ell = 93.271\,910\,28^\circ + 1{,}739{,}527{,}263.1370^\circ T_{TT} - 13.257 T_{TT}^2 - 0.011 T_{TT}^3 \tag{C-3c}
D_O = 297.850\,363\,06^\circ + 1{,}602{,}961{,}601.3280^\circ T_{TT} - 6.891 T_{TT}^2 + 0.019 T_{TT}^3 \tag{C-3d}
\Omega_\ell = 125.044\,522\,22^\circ - 6{,}962{,}890.5390^\circ T_{TT} + 7.455 T_{TT}^2 + 0.008 T_{TT}^3 \tag{C-3e}
Where:
- — Mean anomaly of the Moon (l)
- — Mean anomaly of the Sun (l’)
- — Mean argument of latitude of the Moon (F)
- — Mean elongation of the Moon from the Sun (D)
- — Mean longitude of the ascending node of the Moon ()
Nutation Parameters
Section titled “Nutation Parameters”The nutation parameters are then found using (McCarthy, 1992:33):
a_{p_i} = a_{e1_i} M_\ell + a_{e2_i} M_O + a_{e3_i} \mu_\ell + a_{e4_i} D_O + a_{e5_i} \Omega_\ell \tag{C-4a}
\Delta\psi = \sum_{i=1}^{106} (A_{p_i} + A_{p1_i} T_{TDB}) \sin(a_{p_i}) \tag{C-4b}
\Delta\varepsilon = \sum_{i=1}^{106} (A_{e_i} + A_{e1_i} T_{TDB}) \cos(a_{p_i}) \tag{C-4c}
Nutation Corrections and True Obliquity
Section titled “Nutation Corrections and True Obliquity”Corrections to the nutation parameters ( and ) supplied as Earth Orientation Parameters (EOP) from the IERS are simply added to the resulting values in Eq. C-4 to provide compatibility with the newer IAU 2000 Resolutions (Kaplan, 2005). These corrections also include effects from Free Core Nutation (FCN) that correct errors in the IAU-76 precession and IAU-80 nutation. However for TEME, these corrections do not appear to be used.
The nutation parameters let us find the true obliquity of the ecliptic, . From McCarthy (1992:29—31):
\Delta\psi_{1980} = \Delta\psi + \delta\Delta\psi_{1980} \tag{C-5a}
\Delta\varepsilon_{1980} = \Delta\varepsilon + \delta\Delta\varepsilon_{1980} \tag{C-5b}
\bar{\varepsilon} = 84{,}381.448^{\prime\prime} - 46.8150 T_{TT} - 0.000\,59 T_{TT}^2 + 0.001\,813 T_{TT}^3 \tag{C-5c}
\varepsilon = \bar{\varepsilon} + \Delta\varepsilon_{1980} \tag{C-5d}
Equation of the Equinoxes
Section titled “Equation of the Equinoxes”The equation of the equinoxes () can then be found. The last two terms in the are probably not included in AFSPC formulations. From McCarthy (1992:30):
EQ_{eqe1980} = \Delta\psi_{1980} \cos(\bar{\varepsilon}) + 0.002\,64^{\prime\prime} \sin(\Omega_\ell) + 0.000\,063^{\prime\prime} \sin(2\Omega_\ell) \tag{C-6a}
\theta_{GMST1982} = 67{,}310.548\,41^s + (876{,}600^h + 8{,}640{,}184.812\,866^s) T_{UT1} + 0.093\,104 \, T_{UT1}^2 - 6.2 \times 10^{-6} \, T_{UT1}^3 \tag{C-6b}
\theta_{GAST1982} = \theta_{GMST1982} + EQ_{eqe1980} \tag{C-6c}
Transformation Equations
Section titled “Transformation Equations”These relations let us form the transformation equations:
Precession and Nutation Matrices
Section titled “Precession and Nutation Matrices”[\mathbf{P}]_{MOD \to J2000} = ROT3(\zeta) \, ROT2(-\Theta) \, ROT3(z) \tag{C-7a}
[\mathbf{N}]_{TOD \to MOD} = ROT1(-\bar{\varepsilon}) \, ROT3(\Delta\Psi) \, ROT1(\varepsilon) \tag{C-7b}
TEME to J2000 Transformation
Section titled “TEME to J2000 Transformation”\vec{r}_{J2000} = [\mathbf{P}][\mathbf{N}]\left[ROT3(-EQ_{eqe1980})\right] \vec{r}_{TEME} \tag{C-7c}
\vec{v}_{J2000} = [\mathbf{P}][\mathbf{N}]\left[ROT3(-EQ_{eqe1980})\right] \vec{v}_{TEME} \tag{C-7d}
Worked Example
Section titled “Worked Example”An example is useful to show the various options and their effect on the resulting vectors. Consider an initial ECI (J2000.0, IAU76/FK5) state vector.
Initial Conditions
Section titled “Initial Conditions”June 28, 2000, 15:8:51.655 000 UTCdUT1 = 0.162 360 s, dAT = 21 s, x_p = 0.098 700", y_p = 0.286 000"
r_J2000 = 3961.744 260 3 6010.215 610 9 4619.362 575 8 kmv_J2000 = -5.314 643 386 3.964 357 585 1.752 939 153 km/sStandard TOD, PEF (IAU 76/FK5)
Section titled “Standard TOD, PEF (IAU 76/FK5)”Converting without the nutation corrections ( and ), but using the two additional terms with :
JD_UT1 = 2,451,724.131 155 293 40T_TT = 0.004 904 360 547
r_TOD = 3961.421 498 5 6010.475 268 8 4619.301 531 0 kmv_TOD = -5.314 833 569 3.964 181 915 1.752 759 802 km/s
r_PEF = 298.803 632 8 -7192.314 622 9 4619.301 531 0 kmv_PEF = 6.105 014 271 -0.131 824 177 1.752 759 802 km/sTEME Transformation
Section titled “TEME Transformation”Using equations (C-3) to (C-6) to find the approximate parameters (with 4 nutation terms in Eq (C-4), no additional two terms in Eq (C-6), and no small angle approximations), then transforming TOD or PEF to TEME using Eq (C-7) or Eq (C-2) respectively:
r_TEME = 3961.003 549 8 6010.751 174 0 4619.300 930 1 kmv_TEME = -5.315 109 069 3.963 813 071 1.752 758 562 km/sNotice this vector is “in between” TOD and PEF, but much closer to the TOD value — a reason it is sometimes (imprecisely) considered “inertial”. The authors consider these numbers are within a few mm of CMOC results.
TEME “of date” vs. “of epoch” Demonstration
Section titled “TEME “of date” vs. “of epoch” Demonstration”Using the following TLE data at epoch and at 3 days into the future:
1 00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 47532 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667TEME vector at a time 3 days in the future (day = 182.784 950 62) from TLE epoch:
r_TEME = -9060.473 735 69 4658.709 525 02 813.686 731 53 kmv_TEME = -2.232 832 783 -4.110 453 490 -3.157 345 433 km/sNutation Transformation Matrix (“of date”)
Section titled “Nutation Transformation Matrix (“of date”)”[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999\,999\,999\,56 & 0.000\,000\,000\,00 & 0.000\,029\,505\,95 \\ -0.000\,000\,000\,65 & 0.999\,999\,999\,76 & 0.000\,022\,007\,05 \\ -0.000\,029\,505\,95 & 0.000\,022\,007\,05 & 0.999\,999\,999\,32 \end{bmatrix} \tag{C-8}
Using Eq (7), the inertial (“J2000”) vector at the future time:
r_J2000 = -9059.941 378 6 4659.697 200 0 813.958 887 5 kmv_J2000 = -2.233 348 094 -4.110 136 162 -3.157 394 074 km/sNutation Transformation Matrix (“of epoch”)
Section titled “Nutation Transformation Matrix (“of epoch”)”For the future time using the “of epoch” option, the nutation matrix is found at the epoch time as:
[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999\,999\,999\,55 & 0.000\,000\,000\,00 & 0.000\,030\,111\,90 \\ -0.000\,000\,000\,66 & 0.999\,999\,999\,76 & 0.000\,021\,766\,37 \\ -0.000\,030\,111\,90 & 0.000\,021\,766\,37 & 0.999\,999\,999\,31 \end{bmatrix} \tag{C-9}
And the resulting vector is:
r_J2000 = -9059.951 079 9 4659.680 755 6 813.945 045 1 kmv_J2000 = -2.233 336 111 -4.110 141 024 -3.157 396 220 km/sThis is a difference of 23.6 m in just 3 days.
Summary of Coordinate Frames
Section titled “Summary of Coordinate Frames”| Frame | Full Name | Description |
|---|---|---|
| J2000 | J2000.0 ECI | Mean equator and equinox of J2000.0 epoch (inertial) |
| MOD | Mean of Date | Precessed from J2000 to date (mean equator/equinox of date) |
| TOD | True of Date | Nutated from MOD (true equator/equinox of date) |
| TEME | True Equator, Mean Equinox | SGP4 output frame — between TOD and PEF |
| PEF | Pseudo Earth Fixed | Rotated from TOD/TEME by sidereal time (no polar motion) |
| ITRF | International Terrestrial Reference Frame | Earth-fixed, includes polar motion |
Transformation Chain
Section titled “Transformation Chain”J2000 --[P]---> MOD --[N]---> TOD --[R3(EQ_eqe)]---> TEME | [R3(GAST)] | v PEF --[W]---> ITRFWhere:
- is the IAU-76 precession matrix
- is the IAU-80 nutation matrix
- is the polar motion matrix
- GMST/GAST provides the sidereal rotation